GROUPE RADIOECOLOGIE NORD-COTENTIN

Inventaire des rejets chimiques des installations nucléaires du Nord-Cotentin

Rapport Final

Mai 2002

Préambule

Le présent rapport prend en compte les informations fournies par COGEMA La Hague, EDF, ANDRA et la Marine Nationale concernant les rejets de leurs installations nucléaires du Nord-Cotentin.

Ces informations ont été analysées par le GRNC afin notamment d'en apprécier la cohérence et de reconstituer, dans la mesure, du possible les rejets depuis l'origine.

S'agissant des rejets de la Marine Nationale, il faut souligner que deux types d'informations ont été fournies : les rejets chimiques de l'arsenal du port de Cherbourg (à partir de 1985) et les rejets gazeux des installations classées pour la protection de l'environnement du CIN Querqueville relatifs aux exercices de sécurité (cf. page 301). Ces informations, ayant été fournies plus tardivement que pour les autres installations, font l'objet d'un examen dans le cadre d'un groupe spécialisé qui remettra un rapport d'analyse séparé.

Sommaire

Introduction générale	. 9
COGEMA	9
Centrale EDF de Flamanville	9
Centre de stockage des déchets radioactifs de la Manche	10
Marine Nationale	10
Carte des sites	11
COGEMA La Hague	13
Introduction	. 15
1. Description succincte des installations et des procédés mis en œuvre	17
1.1. Cycle du combustible nucléaire	17
2. Historique du fonctionnement du site COGEMA La Hague	23
2.1. Chronologie des mises en service des différentes usines de retraitement de COGEMA La Hague	23
correspondants	
2.4. Effluents gazeux	36
3. Inventaire des données existantes (1987-2000)	46
3.1.Inventaire des effluents liquides radioactifs (A+V) : les valeurs mensuelles des volumes, des flux et des concentrations de 26 éléments et substances chimiques et de l'uranium	46
3.2. Inventaire des autres effluents liquides et radioactifs	46 46
3.4. Techniques d'analyses chimiques	
4. Inventaire des données reconstituées (1966-1986)	

Anne	exes COGEMA La Hague	47
	A1 : Liste des 330 substances approvisionnées sur le site de COGEMA La Hague (1994 à 1999)	. 49
	A2 : Bilans mensuels de la charge chimique des rejets radioactifs (A+V) de COGEMA La Hague (1987 à 2000)	. 65
•	A3 : Bilans mensuels de la charge chimique des rejets radioactifs (A+V) de COGEMA la Hague (1987 à 2000)	. 81
•	A4 : Techniques d'analyses chimiques utilisées par COGEMA La Hague pour les mesures des rejets (2000)	. 97
•	A5 : Reconstitution des bilans annuels de la charge chimique des rejets liquides radioactifs de COGEMA La Hague (1966 à 1974 – 1975 à 1986)	. 99
•	A6 : Bilans mensuels et annuels des rejets chimiques des eaux à risque (réseaux 1 et 2) de COGEMA La Hague (1989 à 2000)	. 105
	A7 : Bilans mensuels de la charge chimique et bactériologique des eaux usées industrielles et domestiques rejetées par COGEMA La Hague dans le ruisseau "des Moulinets" (1988 à 2000)	. 157
	A8 : Bilans mensuels de la charge chimique et biologique des eaux pluviales rejetées par COGEMA La Hague dans les ruisseaux "des Moulinets" et "de la Sainte-Hélène" (1988 à 2000)	. 173
•	A9 : Bilans annuels de la charge chimique des effluents gazeux rejetés par les deux cheminées des usines UP2-800 et UP3 (1966 à 2000)	. 207
•	A10 : Analyse des dioxines (PCDD) et des furanes (PCDF) émis par l'incinérateur des déchets banals de COGEMA La Hague (1998 à 2000)	. 211
•	A11 : Bilans annuels des rejets chimiques des fumées de l'incinérateur de déchets banals de COGEMA La Hague (1995 à 2000)	. 217
	A12 : Bilans annuels des rejets chimiques des gaz de la chaufferie de COGEMA La Hague (1964 à 2000)	. 219
	A13 : Produits de dégradation du solvant TBP – TPH	. 223
	A14 : Schéma du traitement des effluents organiques	. 227

Cen	trale EDF de Flamanville	.229
Intro	duction	231
1.	Rappel sur le fonctionnement de la centrale	231
1.	.1. Le circuit primaire	231
2.	Origine des effluents	231
2.	.1. La plateforme industrielle .2. Les circuits d'eau .3. Les services généraux	233
3.	Caractéristiques et modes de rejet des différents	
	effluents	233
3. 3. 3.	1. Eaux vannes et usées 2. Eaux pluviales 3. Eaux dites "eaux huileuses" 4. Effluents de production d'eau déminéralisée	233 233 234
	.5. Effluents chimiques associés aux effluents radioactifs	
	Produits chimiques courants utilisés sur le site	
	Contrôle des substances chimiques rejetées	
Anne	exes Centrale EDF de Flamanville	237
	A1 : Eaux huileuses "Centrale de Flamanville"	239
	A2 : Effluents de production d'eau déminéralisée "Centrale de Flamanville"	241
	A3 : Substances chimiques associées aux effluents radioactifs "Centrale de Flamanville" (1986 – 2000)	243
•	A4 : Rejets des réservoirs EX "Centrale de Flamanville" (juin 2000 – avril 2001)	247
	avril 2001)	251

Centre de stockage des déchets radioactifs de la Manche	257
Introduction	259
1. Inventaire chimique des déchets stockés au centre de la Manche	261
2. Evolution du mode de gestion des effluents liquides	265
3. Chronologie des mesures disponibles dans les différents exutoires des rejets liquides du Centre de la Manche	269
4. Résultats des campagnes de mesure réalisées au niveau des eaux à risque et des eaux du réseau pluvial	275
 4.1. Analyses physico – chimiques sur les eaux dites "à risques" du réseau séparatif	279
5. Evaluation de l'ordre de grandeur des rejets annuels massiques en mer des eaux à risque via l'émissaire de COGEMA La Hague	283
6. Surveillance du Centre et de son environnement proche	285
7. Mesures disponibles dans les eaux de surface	291
Conclusion	299
Marine Nationale Arsenal du port de Cherbourg	301
1. Rejets chimiques de l'arsenal du port de Cherbourg	303
Annexes de la Marine Nationale	309

Introduction générale

Les installations nucléaires du Nord Cotentin concernées par cette étude sont :

- > COGEMA site de La Hague,
- > la Centrale EDF de Flamanville,
- > le Centre de stockage de déchets radioactifs de la Manche,
- > la Marine Nationale de Cherbourg.

L'objectif poursuivi par le groupe de travail "terme source" a consisté, dans un premier temps à recenser et à examiner l'ensemble des mesures existantes relatives aux rejets de substances chimiques dans les effluents liquides et gazeux. Ensuite, en l'absence de mesures lors des premières années de fonctionnement des installations, le groupe de travail a estimé l'ordre de grandeur de ces rejets chimiques (essentiellement ceux de COGEMA La Hague).

COGEMA

L'activité de l'établissement de COGEMA La Hague, mise en service en 1966, a d'abord été le retraitement des combustibles usés issus des réacteurs UNGG (Uranium Naturel Graphite Gaz) de 1966 à 1987 puis des réacteurs à eau légère d'origine française et étrangère depuis 1976.

L'ensemble de 26 substances chimiques faisant l'objet d'un suivi réglementaire mensuel depuis 1987 jusqu'à 2000 a été recensé pour les effluents radioactifs et les effluents dits "eaux à risques" qui sont rejetés en mer via l'émissaire.

Les caractéristiques chimiques des autres effluents liquides (eaux usées industrielles, eaux usées domestiques et eaux pluviales) ont été recensées pour la même période. Ces effluents sont rejetés dans les ruisseaux à proximité du site.

La reconstitution des rejets chimiques des effluents radioactifs a été effectuée depuis la mise en service en 1964 jusqu'à 1986.

Le recensement et la reconstitution des substances chimiques rejetées dans les effluents gazeux, émis par le procédé, la chaufferie et l'incinérateur de déchets banals ont été effectués.

Centrale EDF de Flamanville

La centrale EDF de Flamanville comprend deux réacteurs à eau pressurisée (REP) de puissance unitaire de 1300 MWe. Ces deux réacteurs ont été couplés successivement au réseau en décembre 1985 et en juillet 1986.

Les quantités de substances chimiques rejetées annuellement par les différents effluents (principalement par les circuits primaire et secondaire) ont été évaluées depuis 1986 jusqu'à l'an 2000 inclus.

Centre de stockage des déchets radioactifs de la Manche

Ce Centre était destiné au stockage en surface de déchets radioactifs de faible et moyenne activité.

Il a reçu les colis de déchets radioactifs de novembre 1969 à juin 1994.

Après la mise en place de la couverture, le Centre a demandé le passage en phase de surveillance.

Le recensement qualitatif et quantitatif des substances chimiques présentes dans les déchets a été réalisé. Il s'agit principalement de composés de béryllium, de bore, de cadmium, de chrome, des cyanures, de mercure, de nickel, de plomb et d'uranium.

Les quantités d'une vingtaine de substances chimiques contenues dans les effluents liquides (eaux dites "à risque" du réseau séparatif et eaux pluviales recueillies sur le Centre) ont été évaluées à partir d'échantillons moyens semestriels constitués d'aliquotes prélevés périodiquement.

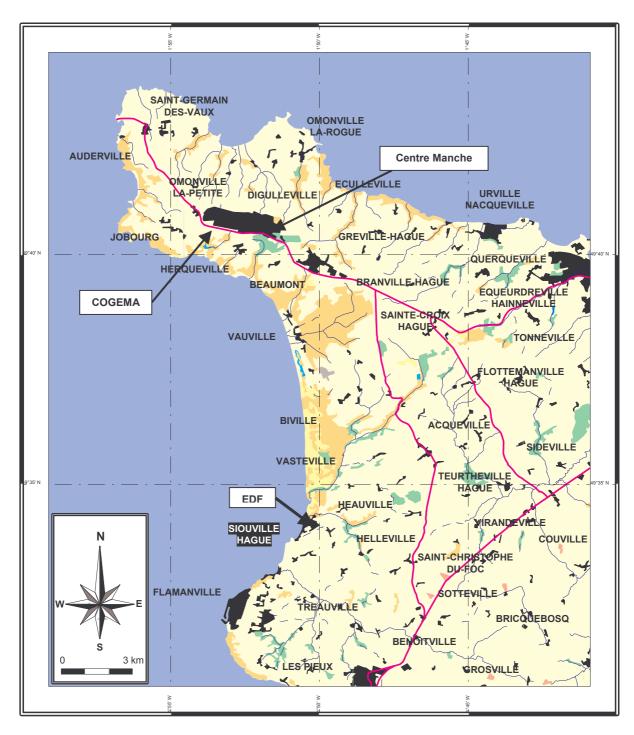
Marine Nationale

Les eaux pluviales et les eaux usées de l'arsenal de Cherbourg de la Marine Nationale ont des réseaux séparés depuis 1981.

Les rejets d'effluents liquides contenant les substances chimiques sont générés essentiellement par les bains acides servant au décapage des pièces métalliques et les bains utilisés pour la galvanoplastie.

Une station de traitement des effluents liquides fonctionne depuis fin 1984.

Les quantités annuelles de substances chimiques issues de la station de traitement sont mesurées de 1985 à l'an 2000.


Il s'agit des métaux (aluminium, chrome total, chrome à la valence VI, cadmium, fer, nickel, zinc) ainsi que de l'élément fluor, du phosphore total, du soufre et de la demande chimique en oxygène (DCO).

Les rejets atmosphériques (oxydes de soufre, dioxyde d'azote et protoxyde d'azote) ont été évalués de 1991 à 2001 à partir de la taxe parafiscale.

Par ailleurs on trouvera en annexe les quantités d'hydrocarbure utilisées lors des exercices de sécurité (dans le bâtiment Lucifer).

CARTE DES SITES

Situation géographique des installations nucléaires du Nord Cotentin

Les sites concernés : COGEMA La Hague, Centrale EDF de Flamanville et le Centre de stockage de la Manche (ANDRA) sont indiqués sur la reproduction de la carte IGN ci-dessus.

COGEMA La Hague

Introduction

Le travail réalisé concernant le terme source des installations de retraitement de combustibles usés de COGEMA La Hague a consisté, dans un premier temps, à recenser et examiner l'ensemble des mesures existantes relatives aux rejets de substances chimiques dans les effluents liquides et gazeux. Ensuite, en l'absence de mesures lors des premières années de fonctionnement, l'ordre de grandeur de ces rejets a été estimé.

 Pour les effluents liquides, l'exploitant a transmis au groupe de travail la totalité des mesures des 26 substances faisant l'objet d'un suivi réglementaire depuis 1987 dans les effluents radioactifs et les "eaux à risque". Ces 26 substances ont été retenues, soit du fait de l'importance des quantités rejetées (comme les nitrates, les nitrites) soit du fait de leur toxicité potentielle (mercure, plomb, cadmium, etc.).

En effet, bien que ces derniers éléments toxiques ne soient pas utilisés dans le procédé de retraitement, il n'est pas possible d'exclure leur présence (sous forme d'impuretés) à l'état de traces dans les réactifs de qualité industrielle utilisés en grande quantité (acide nitrique, soude, formaldéhyde, acide oxalique, etc.).

Les tableaux de mesures joints en annexe fournissent les rejets mensuels exprimés en terme de flux massique ou de concentrations volumiques.

La reconstitution des rejets depuis la mise en service de l'usine UP2 (800 UNGG) en 1966 jusqu'en 1986 n'a été faite que pour les effluents radioactifs (A+V) car ce sont les contributeurs prépondérants aux rejets chimiques tant sur le plan quantitatif que qualitatif (diversité des espèces chimiques).

Cette reconstitution a été effectuée à partir de la connaissance des quantités et caractéristiques des combustibles retraités et des évolutions de procédé, en particulier les procédés de traitement des effluents (STE) en vue de leur décontamination radioactive avant rejet en mer (procédés utilisant des techniques de complexation, précipitation et clarification décrits de façon détaillée plus loin dans le texte).

De plus, à titre prospectif, la diminution attendue du rejet de nitrates et de tributylphosphate (TBP) avec la mise en service du nouvel atelier de purification et d'élaboration du plutonium (R4) de l'usine UP2 800 est également précisée.

Par ailleurs, le recensement de la totalité des substances et éléments chimiques approvisionnés sur le site de La Hague a été réalisé (≈ 330 substances).

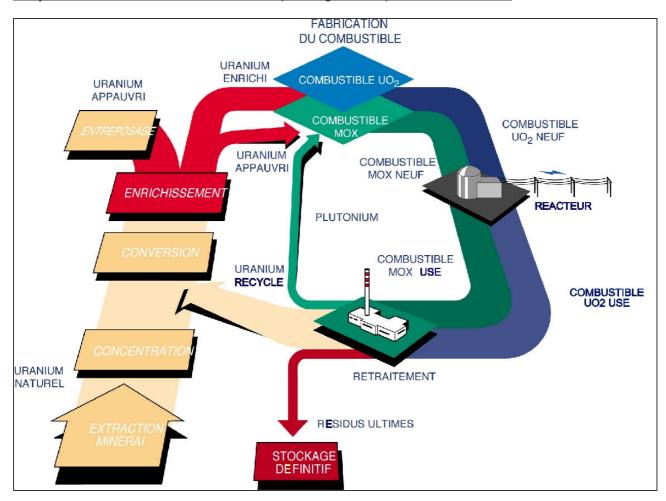
Enfin, est fournie la liste des produits organiques provenant de la dégradation du solvant (TBP) et du diluant (tétrapropylène hydrogéné – TPH) présents à l'état de traces, qui ont pu être identifiés grâce aux travaux de R&D du CEA (environ 100 composés).

- Pour les effluents gazeux, le recensement et la reconstitution des espèces rejetées a porté sur :
 - Les gaz de procédé qui, après traitement sont rejetés par les cheminées des ateliers des usines UP3 et UP2 800,
 - Les gaz émis par la chaufferie du site alimentée en fioul et mise en service en 1964.
 - Les gaz rejetés par l'incinérateur de déchets combustibles conventionnels fonctionnant depuis 1995.

Pour ces deux dernières catégories de rejets gazeux, la reconstitution annuelle a pu être effectuée à partir respectivement des productions de vapeur et des quantités de déchets incinérés.

Pour certains composés volatils comme le protoxyde d'azote (N_2O) pour lesquels la concentration dans les gaz de procédé était inférieure à la limite de détection de la méthode de mesure utilisée, la quantité maximale rejetée a pu être précisée grâce à la connaissance de la chimie du procédé.

En conclusion, de façon similaire à ce qui avait été fait par le GRNC pour la reconstitution des rejets de radionucléides, la démarche "enveloppe" retenue a visé à éviter toute sous-estimation des quantités rejetées par les installations de COGEMA La Hague en fonctionnement normal, étant entendu qu'il n'était pas possible d'identifier ou d'évaluer a posteriori d'éventuels rejets accidentels liés à des dysfonctionnements, par nature de courte durée.


1. Description succincte des installations et des procédés mis en oeuvre

L'établissement de COGEMA La Hague est situé dans la partie nord-ouest de la presqu'île du Cotentin, à 25 kilomètres à l'ouest de Cherbourg dans le canton de Beaumont-Hague (10 500 habitants).

Implanté sur environ 300 hectares, ce Centre emploie de l'ordre de 3 000 personnes.

1.1. Cycle du combustible nucléaire

Le cycle du combustible nucléaire est illustré par la figure N° 1 présentée ci-dessous :

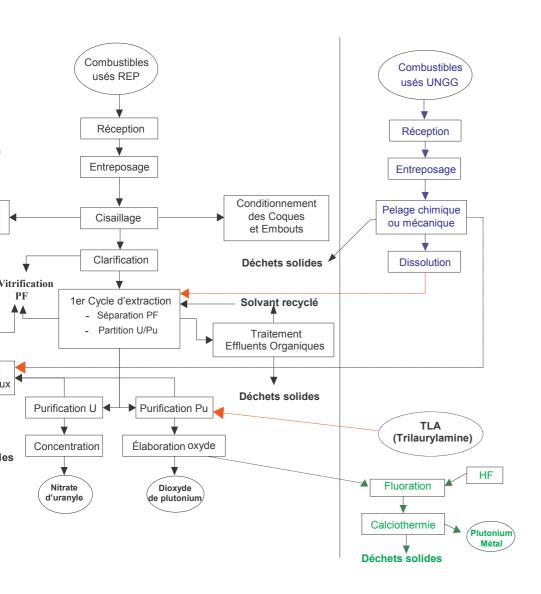
Il comprend les principales étapes suivantes :

Extraction et concentration du minerai : obtention d'une poudre jaune de diuranate d'ammonium $U_2O_7(NH_4)_2$, de magnésium, de sodium ou de peroxyde appelé le "yellow cake".

La conversion : le yellow cake est transformé en hexafluorure d'uranium (UF $_6$). Ce produit est gazeux à 65°C.

L'enrichissement : l'uranium naturel est composé de 99,275 % d'²³⁸U , de 0,72 % d'²³⁵U et de 0,005 % d'²³⁴U. L'isotope 235 est fissile et sera utilisé pour produire de l'énergie.

Le taux d'enrichissement du combustible dans les réacteurs dits "à eau légère" varie actuellement de 3 à 4,2 % en ²³⁵U (3,5 % pour les combustibles appelés UOX1 et 3,7 % pour les combustibles UOX2).


La fabrication des combustibles nucléaires : l'hexafluorure d'uranium enrichi est hydrolysé, calciné puis réduit par l'hydrogène afin d'obtenir une poudre de dioxyde d'uranium UO₂. La poudre est transformée en petites pastilles frittées cylindriques introduites dans de longs tubes métalliques en alliage de zirconium (zircaloy) appelés "crayons" regroupés dans des "assemblages" qui constituent le combustible nucléaire.

Le réacteur : dans le réacteur les noyaux d'uranium et de plutonium (formé dans le cœur par capture neutronique de l'uranium 238) fissionnent en entraînant la production de chaleur qui, cédée au circuit d'eau primaire, est transmise au circuit secondaire ce qui permet de faire fonctionner la turbine qui produit l'électricité.

Chaque assemblage séjourne trois ou quatre ans dans le cœur du réacteur. Les assemblages retirés du réacteur sont entreposés dans une piscine attenante au réacteur, où leur radioactivité décroît avant de procéder à leur transport jusqu'à l'usine de retraitement.

Le retraitement du combustible usé: l'activité de l'établissement COGEMA La Hague, mis en service en 1966, a d'abord été le retraitement des combustibles usés issus des réacteurs de type UNGG (Uranium Naturel Gaz Graphite) de 1966 à 1987, et, depuis 1976 ceux des réacteurs à eau légère sous pression (REP) construits d'abord sous licence étrangère puis française.

ésenté dans la figure N° 2 ci-après :

1.2.1. Objectif

Les usines de retraitement implantées sur le site de La Hague appartenant à COGEMA (Compagnie de Générale des Matières Nucléaires) reçoivent les assemblages de combustibles irradiés provenant des réacteurs nucléaires.

Les combustibles usés poursuivent leur décroissance radioactive et thermique pendant plusieurs années dans les piscines de l'établissement de COGEMA La Hague.

Le procédé de retraitement a pour but de séparer et de purifier les matières valorisables à savoir l'uranium (95 % environ) et le plutonium (1 % environ), en vue de leur recyclage dans de nouveaux combustibles, des produits de fission (émetteurs bêta gamma) et des actinides mineurs : neptunium, américium et curium (émetteurs alpha et bêta), appelés déchets ultimes représentant

4 % environ, en vue de leur conditionnement dans une matrice adaptée (verre borosilicaté).

Ce procédé de traitement par voie aqueuse dit procédé PUREX (Plutonium Uranium Refining by Extraction) comprend les étapes suivantes :

1.2.2. Le procédé "PUREX" pour les combustibles des réacteurs à eau légère

1.2.2.1. Cisaillage-dissolution

Les assemblages de combustibles usés sont cisaillés en tronçons de quelques centimètres. Les éléments de structure et de gainage, une fois séparés et rincés, sont envoyés vers une unité où ils sont conditionnés dans du ciment (premier procédé utilisé) ou par compactage pour mise en conteneurs (projet).

Les tronçons de combustible contenant les matières nucléaires radioactives (produits de fission, uranium, plutonium et actinides mineurs) sont dissous, sous forme de nitrate, dans de l'acide nitrique à ébullition. La solution de dissolution est clarifiée dans une décanteuse centrifuge afin de séparer les matières insolubles, appelées "fines" (composées de métaux : bris de gaines en zirconium provenant du cisaillage et fraction de produits de fission insolubles comme le ruthénium, le rhodium et le palladium).

Les produits de fission gazeux (principalement tritium, carbone 14, krypton 85 et iode 129) ainsi que les oxydes d'azote, générés lors de la dissolution, sont libérés dans le circuit des effluents gazeux pour être traités. Le traitement consiste pour l'essentiel en une recombinaison des oxydes d'azote en acide nitrique qui est recyclé, le piégeage de l'iode (en quasi-totalité) et partiellement du carbone 14 (sous forme de CO_2) dans une colonne de lavage à circulation de soude complétée par des pièges solides à iode (support de catalyseur à base de silice ou d'alumine imprégnée de nitrate d'argent), les aérosols sont piégés dans une succession de filtres à très haute efficacité. Les gaz traités sont ensuite rejetés dans l'atmosphère par les cheminées des usines.

1.2.2.2. Séparation-purification

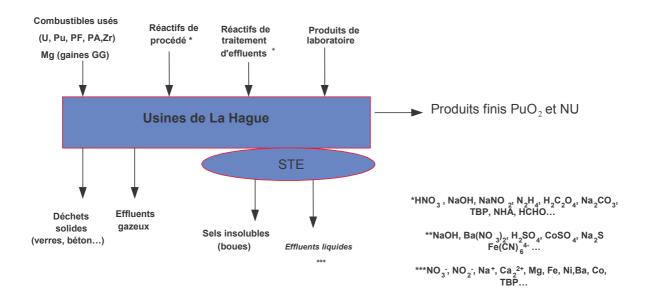
L'uranium et le plutonium sont d'abord séparés conjointement de la solution de dissolution après ajustage (opération dite de cycle d'extraction), puis séparés entre eux (opération dite de partition) et purifiés en utilisant des techniques d'extraction par un solvant constitué d'un mélange de tributylphosphate (TBP) dilué à 30 % en volume dans du tétrapropylène hydrogéné (TPH). Le solvant, après utilisation, est décontaminé (élimination des radionucléides), purifié (élimination des produits de dégradation chimique comme les acides mono et dibutylphosphorique) par lavages chimiques avec des solutions de carbonate de sodium, de soude et d'acide nitrique et régénéré par distillation sous vide suivie d'une rectification puis recyclé dans le procédé de retraitement afin de minorer les rejets de composés organophosphorés.

1.2.2.3. Produits finis

Le plutonium, en solution, après purification, est précipité sous forme d'oxalate insoluble qui après filtration, séchage et calcination, est converti en poudre de dioxyde de plutonium (PuO₂). Cette poudre est conditionnée dans des boîtes serties en acier inoxydable.

Ce produit final est réutilisé pour la fabrication de combustibles mixtes UO₂-PuO₂ (ou MOX) destinés aux réacteurs de type à eau légère.

L'uranium est stocké sous forme de solution concentrée de nitrate d'uranyle (appelé NU) puis expédié dans un autre site de COGEMA La Hague en vue de sa conversion en oxyde (UO_2 ou U_3O_8) pour stockage en l'état ou transformation en fluorure d'uranium (UF_4 ou UF_6) en vue de son recyclage ultérieur dans les réacteurs à eau légère, après ré-enrichissement éventuel (uranium de retraitement ré-enrichi).


La solution de produits de fission est concentrée avec ajout de formol pour détruire l'excès d'acide nitrique. Les oxydes d'azote formés sont recombinés en acide nitrique qui est rectifié et recyclé dans le procédé. La solution concentrée est évaporée dans un calcinateur et les oxydes de produits de fission et actinides obtenus sont incorporés dans du verre. Les colis de verre sont destinés à un entreposage (permettant leur refroidissement par décroissance radioactive) avant leur stockage définitif.

Parmi les autres substances chimiques introduites en quantité significative dans le procédé de retraitement, citons également le nitrite de sodium utilisé pour produire des vapeurs nitreuses nécessaires à l'ajustage du plutonium en solution à la valence IV. D'autre part, le nitrate d'hydrazine et le nitrate d'hydroxylamine (ou NHA) permettent de stabiliser les valences réduites du plutonium ($Pu_{(III)}$) et de l'uranium ($U_{(IV)}$).

Figure N° 3 : Schéma simplifié des usines de retraitement

GT REJETS CHIMIQUES - terme source COGEMA - Fig.N°3

SCHEMA SIMPLIFIE DES USINES DE RETRAITEMENT

NU : nitrate d'uranyle

1.2.3. Variantes du procédé pour les combustibles usés type UNGG

1.2.3.1. Variante de la dissolution

Les combustibles UNGG (Uranium Naturel Graphite Gaz) sont constitués d'un barreau cylindrique ou annulaire d'uranium métallique gainé de magnésium.

Le procédé consiste, avant la dissolution de l'uranium, à retirer mécaniquement la gaine en magnésium ou à réaliser une dissolution ménagée du magnésium (appelée pelage chimique). La solution résultant du pelage chimique est envoyée à la station de traitement des effluents aqueux. La solution de dissolution du combustible à base d'uranium métallique rejoint le processus d'extraction du premier cycle.

1.2.3.2. Variante pour la purification du plutonium

Pendant quelques temps, l'extractant utilisé dans le cycle de purification du plutonium était la trilaurylamine (TLA) qui a été remplacée ensuite par le tributylphosphate (TBP).

Les rejets de trilaurylamine (TLA), utilisée pendant cette période de l'usine UP2-800, n'ont pas été retenus pour cette étude. Les quantités rejetées étaient limitées car les tonnages retraités étaient relativement faibles.

1.2.3.3. Variante pour l'élaboration du produit final

Le produit final du cycle du plutonium au début du fonctionnement de l'usine de retraitement était le plutonium métal obtenu à partir de l'oxyde par opération de fluoration suivie d'une calciothermie.

Les produits générés par ces deux opérations chimiques sont le fluorure de calcium et l'eau. Les rejets de ces produits, utilisés au démarrage de l'usine UP2-800, n'ont pas été retenus pour cette étude.

1.2.4. Effluents liquides

Les effluents liquides issus du procédé sont traités, si nécessaire, en vue de leur décontamination radiologique par co-précipitation chimique, dans les deux stations de traitement des effluents STE2 (depuis 1966) et STE3 (depuis 1989). L'activité des rejets doit répondre aux dispositions prévues par les arrêtés préfectoraux et par les arrêtés interministériels de 1980 et 1984.

La nouvelle gestion des effluents liquides (dite NGE), décrite au § 2.3.1., a permis de réduire significativement les rejets radioactifs et chimiques par recyclages internes.

L'acide nitrique utilisé dans le procédé de retraitement est aujourd'hui en grande partie recyclé dans le procédé après concentration et rectification des effluents acides, afin de minorer les rejets de nitrates dans l'environnement.

Une autre partie des réactifs chimiques utilisés est détruite dans le procédé (principalement les oxydes d'azote, le nitrate d'hydrazine, le nitrate d'hydroxylamine, l'acide oxalique, le formol) en générant des effluents gazeux (essentiellement dioxyde de carbone et azote). Les équations chimiques de destruction sont présentées au § 2.3.1.6.

2. Historique du fonctionnement du site de COGEMA La Hague

2.1. Chronologie des mises en service des différentes usines de retraitement de COGEMA La Hague

La première usine de retraitement dite usine UP2 a été mise en service en 1966.

Elle était conçue pour le retraitement des combustibles usés à base d'uranium naturel métallique déchargés de la première génération des réacteurs d'EDF de la filière dite "Uranium Naturel Graphite Gaz" (UNGG). Sa capacité de retraitement était égale à 800 tonnes par an de combustibles UNGG.

Bien que la construction de ces réacteurs ait été arrêtée au début des années 1970, le retraitement des combustibles UNGG s'est poursuivi jusqu'en 1987.

Suite au développement des réacteurs à base d'oxyde d'uranium enrichi modérés et refroidis par l'eau sous pression (dits réacteurs REP) une tête d'usine spécifique permettant le cisaillage et la dissolution des combustibles correspondant et dénommée "Haute Activité Oxydes" (ou HAO) a été mise en service en 1976, l'ensemble de l'usine étant appelée UP2-400 (correspondant à la capacité de traitement annuel de 400 tonnes "oxyde").

Enfin deux nouvelles usines destinées au traitement des combustibles oxydes étrangers et français, dénommées respectivement UP3 et UP2-800 (capacité de traitement annuelle de l'ordre de 800 tonnes chacune) ont été mises en service respectivement en 1990 et 1994.

Il faut noter également que de petites quantités de combustibles UO₂-PuO₂ provenant du réacteur PHENIX à neutrons rapides (environ 10 tonnes) et de réacteurs de type à eau pressurisée (REP) (environ 4,7 tonnes de combustibles MOX) ont été retraités à titre de campagnes pilotes pour la qualification du procédé de retraitement ou de campagnes ponctuelles.

Le tableau ci-dessous résume ces différentes phases de fonctionnement des usines.

1966 : démarrage de **l'usine UP2** affectée au retraitement des combustibles "UNGG",

1976 : démarrage de l'installation HAO (Haute Activité Oxyde) de **l'usine UP2 400** affectée au retraitement des combustibles oxydes issus des réacteurs à eau légère,

1989 : démarrage de l'atelier de vitrification R7 de l'usine UP2 800,

1989: démarrage de la station de traitement des effluents STE 3 (INB 118),

1990 : démarrage de **l'usine UP3** (INB 116) affectée au retraitement des combustibles usés étrangers.

1994 : démarrage des ateliers R1 et R2 pour le doublement des capacités de retraitement "oxyde" de l'usine UP2 (appelée **UP2 800**) – INB 117,

1995 : nouvelle gestion des effluents (NGE) consistant à traiter et à recycler une grande partie des effluents liquides radioactifs dans le procédé en vue de leur vitrification et à déclasser des effluents actifs à un niveau d'effluents de type V ne nécessitant pas de traitement de décontamination chimique. Depuis lors, les effluents de procédé des usines ne subissent plus de traitement chimique dans la STE3 ; cette installation reste utilisée à une moindre fréquence pour des campagnes spécifiques.

Remarque : depuis 1976 l'établissement de La Hague est exploité par COGEMA qui a succédé au CEA.

2.2. Différents types de combustibles retraités et tonnages correspondants

De 1966 à 2000 l'ensemble des usines du site a retraité :

- 5 000 tonnes de combustibles UNGG (exclusivement dans l'usine UP2 800) de 1966 à 1987.
- 16 300 tonnes de combustibles "oxydes d'uranium" issus des réacteurs à eau légère.

Tableau N° 1 : Nature et quantité de combustibles retraités par usine

Usine de retraitement	Type de combustible			1988-89	1990-mi 94	Mi 1994-2000	
UP2 400	UNGG	50	00 t	0	0	0	
UP2 400	Oxyde REP	0		4400 t		30 t	
UP2 800	Oxyde REP	0	0	0	0	5200 t	
UP3	Oxyde REP	0	0 0 0 6		67	6700 t	

2.3. Descriptif des types d'effluents liquides et des évolutions des modes de gestion et de traitement

Les effluents liquides comprennent quatre catégories selon leur origine.

La principale catégorie concerne les effluents liquides radioactifs qui contiennent la quasi-totalité de l'activité et environ 97 % des produits chimiques rejetés par l'établissement de COGEMA La Hague.

2.3.1. Présentation des effluents liquides radioactifs

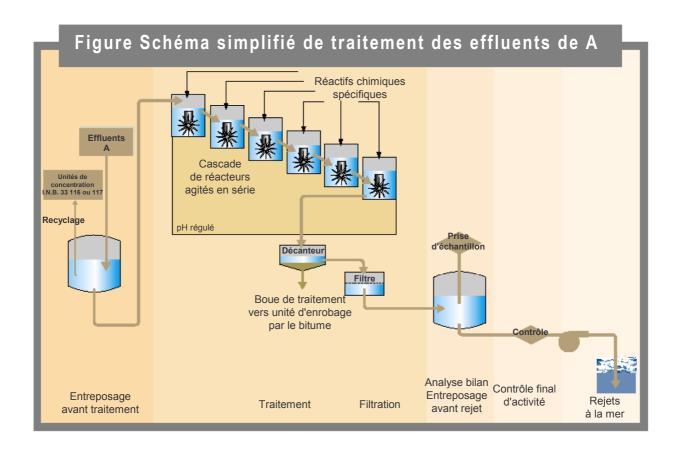
Ce sont les effluents liquides issus du procédé.

Le volume annuel moyen des effluents liquides radioactifs rejetés en mer, de 1987 à 2000, est d'environ 156 000 m³.

2.3.1.1. Description des effluents : A, V, tritiés et iodés

- les effluents A (effluents de procédé dont l'activité est la plus élevée), subissent un traitement chimique par co-précipitation,
- les effluents V (appelés "à vérifier" et dont l'activité est faible). Il s'agit d'effluents provenant de la blanchisserie, des douches et lavabos des zones contrôlés, des lèchefrites et siphons de sol des locaux, des vidanges des boucles internes de chauffage et de refroidissement, des eaux des piscines et distillats des colonnes de rectification, de la solution sodique des colonnes de piégeage de l'iode contenu dans les gaz de dissolution, etc. Ils subissent un traitement de neutralisation et de filtration (25 micromètres) avant contrôle et rejet en mer via l'émissaire.
- **les effluents appelés tritiés et iodés** sont une sous division des effluents V. Ils proviennent de la solution sodique de la colonne de traitement des gaz de dissolution.

2.3.1.2. Traitement des effluents A


Le traitement des effluents de procédé de type A est effectué dans les stations de traitement des effluents (dites STE 2 et STE 3).

Ce traitement est destiné à diminuer la teneur résiduelle des radionucléides avant contrôles et rejets en mer via la canalisation dont la partie sous-marine a une longueur d'environ 5 000 mètres.

Ce procédé, à base de co-précipitations successives a beaucoup évolué depuis le démarrage des usines.

Le schéma simplifié du traitement des effluents de type A est présenté dans la figure N° 4 ci-après :

Figure N° 4 : Schéma simplifié du traitement des effluents A

Les stations de traitement des effluents radioactifs de type A ont pour objet de décontaminer les effluents par coprécipitations chimiques des radionucléides. La séparation solide/liquide est effectuée dans un décanteur. Le liquide surnageant est filtré, entreposé dans une cuve en vue de la prise d'échantillon pour analyses. L'effluent contrôlé conforme est rejeté en mer via la conduite.

Les insolubles, appelés boues, sont entreposés dans des silos en vue de leur conditionnement ultérieur (STE2) ou ont été conditionnés, en ligne, par enrobage dans du bitume et mis en fûts (STE3).

Les réactifs et leurs effets recherchés, actuellement utilisés dans les stations de traitement des effluents liquides radioactifs (STE) sont les suivants :

- H₂SO₄ 36 N et Ba (NO₃)₂ à 40 g/l : formation de sulfate de baryum : BaSO₄ , *in situ* pour la décontamination des strontium (Sr), zirconium (Zr), nobium (Nb), cérium (Ce), du cobalt (Co) et des actinides, formation de sulfates insolubles qui se combinent avec le nitrate de baryum.
- NaOH 10 N : neutralisation et décontamination de l'U, du Pu, du Zr, du Nb, du Ce et du Co,
- NaOH 1N: ajustement du pH à 9.
- CoSO₄ à 15 g/l + Na₂S à 160 g/l : formation du sulfure de cobalt pour la décontamination du ruthénium,
- PPFeNi (précipité préformé de ferricyanure de nickel) : décontamination du césium (Cs).

2.3.1.3 Évolutions de la gestion des effluents et conséquences sur le traitement et les rejets

Les principales évolutions du procédé de traitement des effluents radioactifs de type A dans les stations de traitement sont les suivantes :

1966: neutralisation par la chaux puis utilisation du carbonate de calcium,

1967 : les réactifs (sulfate de baryum et hydroxyde ferrique) sont introduits pour limiter la

précipitation du magnésium,

1969 : le ferrocyanure double de potassium et de cobalt est utilisé pour remplacer le

ferrocyanure de cobalt et de nickel afin d'optimiser la décontamination du césium,

1970 : utilisation de résines échangeuses d'ions pour le traitement des effluents de faible

activité,

1971 : utilisation du sulfate, puis du sulfure de cobalt, pour la décontamination du cobalt et

du ruthénium,

1977: utilisation du sulfate de titane, se transformant en hydroxyde, pour la

décontamination de l'antimoine (Sb) et des radionucléides émetteurs alpha,

1988: utilisation du sulfure d'ammonium en remplacement du sulfure de sodium et

traitement mélangé des effluents dits de type FA (faible activité) et MA (moyenne

activité),

1989: mise en service de la station de traitement des effluents STE3.

vers 1990 : recyclage dans le procédé d'une partie de l'acide nitrique et du TBP afin de diminuer

sensiblement les rejets de nitrate et de produits organiques phosphorés,

1995: nouvelle gestion des effluents (NGE) consistant à mieux trier, à traiter par

évaporation, à filtrer par ultrafiltration recyclage dans le procédé et à envoyer à la vitrification des effluents traités. Cette nouvelle gestion a un impact très sensible sur les volumes d'effluents traités par voie chimique, ce qui entraîne une diminution des réactifs chimiques utilisés et, par suite, une baisse des rejets chimiques en mer

(hors nitrate et nitrite).

Quelques évolutions notables des rejets chimiques : voir tableaux N° 2 et 3

Nous observons, en particulier, les évolutions suivantes des rejets de substances chimiques :

- Diminution sensible des rejets d'uranium.
- Diminution sensible, ces dernières années, des rejets annuels de tributylphosphate (TBP):

1995 : 7,21 tonnes
 1998 : 2,84 tonnes

- 1996 : 6,17 tonnes 1999 : 2,11 tonnes
- 1997: 4,0 tonnes 2000: 1,2 tonne
- Stabilisation des rejets de nitrates, malgré l'augmentation de la production entre 1990 et l'an 2000, ceci grâce au recyclage de l'acide nitrique dans le procédé.
- Les valeurs déclarées des rejets de métaux, en particulier le cobalt, le calcium, le magnésium, l'aluminium, le fer et le plomb ont diminué sensiblement depuis 1995 (influence de la nouvelle gestion des effluents d'où diminution des réactifs utilisés) et de nouveau très sensiblement en 2000 (amélioration dans les méthodes d'analyses qui ont permis d'abaisser les limites de détection des métaux).

Évolution prévue :

De plus, le démarrage du nouvel atelier R4 (purification, conversion et conditionnement du plutonium) prévu en 2002 devrait entraîner d'une part la diminution des rejets du TBP à environ 350 kg/a, soit 30 % des rejets de tributylphosphate de l'année 2000, d'autre part la diminution des nitrates rejetés d'environ 1500 t/a, soit 45 % des rejets de nitrates de l'année 2000.

2.3.1.4. Mode de prélèvement et de contrôles des effluents radioactifs (types A et V)

Un prélèvement est effectué sur chaque cuve d'effluents radioactifs traités de type A et V. Un contrôle radiologique est effectué sur chaque cuve d'effluents liquides.

Un aliquote d'échantillon moyen représentatif des effluents radioactifs A + V est réalisé et contrôlé chaque mois depuis 1987.

Un échantillon est acidifié pour le dosage des cations, un autre est basifié (par la soude 1N) pour le dosage des espèces instables en milieu acide, nitrite en particulier.

2.3.1.5. Sélection des substances chimiques mesurées dans les effluents radioactifs

Depuis 1987, 26 substances chimiques sont régulièrement comptabilisées dans les effluents radioactifs liquides. Cette date correspond à la mise en application de l'avis du Conseil d'État du 27 janvier 1987 qui précisait que le "rejet sous forme liquide de substances chimiques mêlées à des substances radioactives doit être réglementé dans le cadre du décret du 31 décembre 1974". Les résultats de ces analyses sont présentés dans les registres transmis mensuellement à l'OPRI.

Ces substances ont été sélectionnées à l'époque, sur des critères de quantités rejetées et de toxicité, parmi les nombreuses substances mises en œuvre sur la plate forme industrielle de La Hague. Aujourd'hui sont dénombrées environ 330 substances entrant sur l'établissement. La liste est en **annexe N° 1**.

Cette liste comprend:

- des réactifs utilisés dans le procédé,
- des réactifs utilisés ou présents dans le traitement des effluents,
- des éléments métalliques pouvant être présents dans les effluents : aluminium, cadmium, chrome, fer, plomb, ainsi que l'uranium.

Les **moyennes annuelles** en concentration et en quantité des 26 substances chimiques, mesurées entre 1987 et 2000 dans les effluents radioactifs (sous catégories A+V) rejetés en mer, sont présentées dans les **deux tableaux N° 2 et 3**.

Les résultats des analyses chimiques **mensuelles**, en concentration et en flux, concernant les 26 substances, sont présentés en **annexes N° 2 et 3.**

Les données mensuelles sur les rejets correspondant aux 26 substances sélectionnées, portant sur la concentration et la masse, existent de 1987 à 2000 pour l'ensemble des effluents liquides radioactifs : type A et V réunis. On ne dispose que de quelques résultats ponctuels relatifs aux rejets de type A et V analysés séparément. Ce caractère fragmentaire ne permet pas une exploitation des mesures sur les effluents A et V séparément.

Par contre toutes les données concernant les volumes de rejets respectifs des effluents A et V existent pour toutes les années de 1966 à 2000.

ents liquides radioactifs (A+V) COGEMA La Hague de 1987 à 2000 (concentrations en mg/l)

989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
70	178	149	136	145	178	165	166	155	150	153	132
cédé											
300	16 500	18 300	13 200	17 100	17 300	15 100	22 500	21 700	22 100	23 500	25 300
114	105	93	131	136	230	380	431	487	563	463	436
400	7 200	7 600	5 600	7 900	8 000	7 500	10 800	10 400	10 000	10 800	11 800
8	3	6,6	2,7	2,1	6,6	2	1,7	0,9	1,2	0,8	0,8
0,1	<0,1	<0,1	<0,9	0,1	<0,8	<0,1	<0,1	<0,2	<0,2	<0,1	1
53	13	11	14	18	24	43	37	26	19	14	9
6,5	9,7	11,4	13	9,2	13	17	7,4	<10	10,1	10,2	11,6
itemen	t des efflu	ents liquid	les								
0,4	0,3	0,3	0,2	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,4
26	30	30	30	30	30	30	58	98	11	12	11
21	11,4	8,1	9,5	10	9,4	7,8	9,3	7	2,9	2,8	2,5
2,3	1,5	1	1	1,2	2,7	2,6	2,6	0,5	0,5	0,7	0,5
2	1,5	0,7	1	6	<5	<1	<1	<1	<1	<1	0,7
134	783	648	366	327	215	69	56	18	29	30	30
4,6	5,1	4,5	2,3	1,6	3,2	1,2	1,4	<1	<1	<1,3	<1
0,3	0,3	0,6	0,2	<8,1	1	<1	<1,0	<1	<1	<1	<0,2
161	115	171	67	42	53	26	35	28	22	20	20
0,2	0,5	0,3	0,4	0,4	0,2	0,5	0,6	0,1	0,05	0,1	0,08
0,1	0,1	0,1	0,4	0,3	0,1	<0,1	<0,1	<0,1	<0,1	<0,1	0,07
0,8	<1,0	<1	1,5	<63	<1,0	<1	<1	<1	<1	<1	<1
,05	0,1	0,1	0,3	<0,2	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,05
2	1,3	1,1	4,2	6,1	1,6	1,8	1,8	1,6	1,6	1,1	1,2
:0,4	<1	<1	<1,2	<4,3	<0,6	<1	<1	<1	<1	<1	<0,01
<2	<2	<4,1	<5	<118	<10	<10	<10	<10	<10	<10	0,05
0,2	0,2	0,2	0,4	<2,7	<1	<1,0	<1,0	<1	<1	<1	<0,05
0,2	<0,1	<0,4	<0,5	<2,5	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,05
114	1	414	404	457	674	1240	1665	1580	1286	1320	1480
3,3	1,1	0,7	0,8	1,3	1,7	0,8	1,4	0,7	0,8	1,0	0,7
de déte	ction.	Les «/» s	signifient : ab	sence de m	esure.						

ents liquides radioactifs (A+V) COGEMA La Hague de 1987 à 2000 (Masses en t/a)

1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
170	178	149	136	145	178	165	166	155	150	153	132
3290	2880	2720	1800	2470	3070	2510	3730	3350	3310	3600	3330
0,06	0,06	0,04	0,03	0,02	0,02	0,02	0,02	0,03	0,02	0,04	0,05
4,4	5,9	2,7	3,7	3,6	4,0	5,5	9,6	15,2	1,7	1,9	1,5
19	18	14	18	20	41	63	71	75	84	71	57
-	-	61,7	55	66	120	206	275	245	193	202	195
<0,02	<0,02	<u><0,01</u>	<u><0,01</u>	0,02	<u><0,14</u>	<0,02	<0,02	<0,03	<0,04	<0,02	<u><0,01</u>
9,11	2,24	1,65	1,87	2,70	4,33	7,21	6,17	4,00	2,84	2,11	1,2
2,83	1,70	1,70	1,78	1,34	2,32	2,87	1,53	1,21	1,53	1,56	1,53
194	137	96	50	47	38	11	9,2	2,9	4,3	4,5	3,9
-	-	-	-	-	-	-	-	-	-	-	-
1440	1260	1130	829	1150	1430	1250	1790	1610	1560	1650	1550
3,57	1,99	1,21	1,29	1,46	1,67	1,30	1,55	1,10	0,43	0,43	0,33
0,4	0,25	0,15	0,14	0,17	0,21	0,45	0,44	0,88	0,07	0,11	0,07
0,36	0,23	0,16	0,57	0,89	0,28	0,29	0,30	0,25	0,24	0,17	0,16
0,78	0,90	0,67	0,31	0,24	0,57	0,20	0,22	<u><0,17</u>	<u><0,15</u>	<u><0,19</u>	<u><0,1</u>
0,09	0,05	0,09	0,03	1,17	0,18	0,17	<0,17	<u><0,15</u>	<0,15	<0,15	<0,02
0,03	0,04	0,03	0,06	0,39	0,16	<0,17	<0,17	<u><0,15</u>	<0,15	<u><0,15</u>	<0,01
27,5	20,2	25,5	9,1	6,0	9,5	4,3	5,8	4,3	3,3	3,1	2,7
0,04	0,09	0,04	0,05	0,06	0,04	0,08	0,01	0,01	0,01	0,01	0,01
0,30	0,26	0,10	0,13	0,88	<u><0,08</u>	<u><0,16</u>	<u><0,17</u>	<u><0,16</u>	<u><0,15</u>	<u><0,15</u>	0,01
0,02	0,26	0,02	0,05	0,04	0,03	<u><0,02</u>	<u><0,02</u>	<u><0,01</u>	<u><0,01</u>	<u><0,01</u>	0,01
<0,03	<0,02	<u><0,06</u>	<u><0,06</u>	<u><0,4</u>	<0,04	<0,03	<0,04	<0,03	<0,03	<0,03	<u><0,01</u>
<0,03	<u><0,02</u>	<u><0,61</u>	<u><0,68</u>	<u><17</u>	<u><1,78</u>	<u><1,7</u>	<u><1,7</u>	<u><1,6</u>	<u><1,5</u>	<u><1,5</u>	0,01
<0,07	<u><0,3</u>	<u><0,14</u>	<u><0,17</u>	<u><0,6</u>	<u><0,11</u>	<u><0,17</u>	<u><0,17</u>	<u><0,16</u>	<u><0,15</u>	<u><0,15</u>	<u><0,01</u>
0,15	0,19	0,13	0,20	<u><9,1</u>	<u><0,18</u>	<u><0,17</u>	<u><0,17</u>	<u><0,16</u>	<u><0,15</u>	<u><0,15</u>	<u><0,13</u>
0,01	0,02	0,02	0,04	<u><0,3</u>	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,01
1,31	0,17	1,0	0,36	0,03	1,18	0,32	0,27	0,15	0,19	0,13	0,10
0,57	0,20	0,11	0,11	0,20	0,31	0,13	0,24	0,11	0,12	0,16	0,09

eures à la limite de détection de la méthode analytique utilisée.

2.3.1.6. Commentaires concernant les résultats des mesures (tableaux N° 2 et 3)

Limites de détection : Il faut noter que certaines substances n'ont pas pu être mesurées car leur concentration était inférieure à la limite de détection de la méthode analytique utilisée. Dans ce cas, la limite de détection donnée par la méthode et l'instrumentation analytique utilisées est prise en compte en notant : " <...." : inférieure à

Cette valeur apparaît en rouge et soulignée dans les deux tableaux N° 2 et 3.

DCO = demande chimique d'oxygène : représente tout ce qui peut être oxydé dans l'effluent par le dichromate de potassium en milieu sulfurique (par exemple les sels minéraux oxydables, les composés organiques, etc.).

Origines et contribution aux rejets chimiques : le nitrate et le nitrite de sodium rejetés, provenant de l'utilisation de l'acide nitrique et du nitrite de sodium dans le procédé de retraitement, représentent la part essentielle des quantités rejetées (environ 99,7 % du total des rejets chimiques des effluents liquides radioactifs soit 4 937 tonnes en 2000 sur un total de substances chimiques rejetées de 4950 tonnes).

Les autres réactifs chimiques utilisés et non complètement détruits dans le procédé ou susceptibles d'être présents dans les rejets (hydrate d'hydrazine, tributylphosphate (TBP), carbonate ...) représentent environ 0,1 % des quantités rejetées, soit environ 5 t/a.

La partie soluble des réactifs utilisés pour le traitement de coprécipitation des effluents (acide sulfurique, sel ferrique, sulfure de sodium, sulfates de baryum et de cobalt etc.) représente environ 0,1 % du total des produits chimiques rejetés, soit environ 5 t/a.

Les impuretés contenues, en faible teneur, dans les réactifs de qualité industrielle (en particulier le carbonate de calcium, la soude, l'acide nitrique) et dans l'eau (par exemple les éléments chimiques tels que le chlore, le fluor et le mercure) représentent moins de 0,1 % du total des produits chimiques rejetés.

Les produits générés par la corrosion des équipements de procédé, généralement en acier inoxydable, représentent une dernière catégorie de constituants chimiques en très faibles quantités par rapport aux autres origines décrites ci-dessus.

Il faut noter que plusieurs réactifs approvisionnés sont détruits dans le procédé et ne génèrent pas de rejets chimiques dans les effluents liquides. C'est en particulier le cas pour les substances suivantes dont le mécanisme de destruction est présenté ci-dessous

L'hydrazine :

$$N_2H_5^+$$
 + 2 HNO₂ \rightarrow $N_2O\uparrow$ + $N_2\uparrow$ + 3 H₂O + H⁺

Nitrate d'hydroxylamine :

$$2 \text{ NH}_3 \text{OH}^+ + 2 \text{ HNO}_3 \rightarrow 3 \text{ HNO}_2 + \text{H}_3 \text{O}^+ + \frac{1}{2} \text{ N}_2 \uparrow + \text{H}_2 \text{O}$$
 $2 \text{ NH}_3 \text{OH}^+ + 2 \text{ Pu}^{4+} \rightarrow 2 \text{ Pu}^{3+} + \text{N}_2 + 2 \text{ H}_2 \text{O} + 4 \text{ H}^+$

Acide oxalique :

$$Pu(C_2O_4)_2 + O_2 \rightarrow PuO_2 + 4CO_2^{\uparrow}$$
 (à chaud)
 $Pu(C_2O_4)_2 + 8 \text{ HNO}_3 + (\text{Mn}^{++} \text{ catalyseur}) \rightarrow Pu^{4+} + 4 \text{ NO}_3^{--} + 4 \text{ CO}_2^{\uparrow} + 4 \text{ NO}_2^{\uparrow} + 2 \text{ H}_2O_2^{\uparrow}$

Formol:

$$HCHO + 2 HNO_3 \rightarrow NO^{\uparrow} + NO_2^{\uparrow} + CO_2^{\uparrow} + 2 H_2O$$

Oxydes d'azote :

$$NO + NO_2 + H_2O + O_2 \rightarrow 2 HNO_3$$
 (recyclé dans le procédé)

2.3.1.7. Méthodes d'analyses

Les principales méthodes analytiques utilisées sont présentées en annexe N° 4.

Il faut noter que la mesure des éléments présents en faible quantité, comme les métaux, est gênée par la forte concentration des solutions en sodium, ce qui impose une dilution importante. Ceci influe directement sur la limite de détection. C'est le cas, en particulier pour la méthode de mesure par spectrométrie d'émission atomique à source plasma (ICP/AES), où la forte concentration en sodium des solutions impose une dilution importante afin de diminuer l'intensité des raies d'émission du sodium, ce qui induit une limite de détection plus élevée.

L'évolution des techniques analytiques a permis d'abaisser la limite de détection. On notera en particulier que l'utilisation de la technique ICP/MS (Spectrométrie de masse à source plasma d'argon) en 2000 au lieu de la technique spectrométrique d'émission atomique à source plasma d'argon dite ICP/AES a permis d'abaisser, d'environ un facteur 20, les limites de détection des cations (le chrome, le cobalt, le mercure, le nickel et le plomb).

2.3.1.8. Modalité de rejet en mer des effluents liquides radioactifs (types A et V)

Les effluents liquides de type A sont stockés dans des cuves pour contrôle. Le rejet s'effectue entre 2 heures 30 minutes avant la pleine mer de Diélette et ½ heure après, soit une période de 3 heures de rejet.

Les effluents liquides de type V sont, après filtration et contrôles radiologiques, rejetés en mer, via l'émissaire, sans condition particulière d'horaire.

2.3.1.9. Méthode utilisée pour la reconstitution des données de rejets chimiques pour la période 1966 à 1986

Les années 1970 à 1976 ont connu une évolution du procédé de traitement des effluents liquides.

De **1976 à 2000** la chimie du procédé de traitement des effluents n'a pas connu d'évolution notable, si ce n'est dans sa mise en œuvre afin d'améliorer les performances de décontamination radiologique.

Compte tenu des connaissances du procédé chimique de traitement des effluents, il est possible d'indiquer, pour chaque substance chimique rejetée, si elle provient d'un effluent de type A ou de type V ou de l'ensemble A+V. Ceci permet donc d'évaluer les quantités annuelles de substances rejetées en multipliant la concentration par le volume correspondant au type d'effluent.

On distingue quatre catégories de substances chimiques :

- Certaines substances chimiques (par exemple nitrate, nitrite, sodium, magnésium) sont directement liées aux tonnages et types de combustibles retraités dans la période antérieure à 1987. Il est donc possible de reconstituer les rejets de ces constituants pour les années 1966 à 1986.
- Le calcul des rejets de sodium est effectué à partir du nombre de moles de nitrate et de nitrite rejeté, évalué selon la méthode précédente.
- Pour le calcul des rejets de calcium, il est considéré que le nombre de moles de chaux est égal à la moitié de l'acidité nitrique présente en 1996 ; pour les années 1967 et 1968, on admet que la neutralisation de l'acidité est effectuée à égalité par la chaux et par la soude.

- Pour les constituants chimiques mineurs en terme de quantité (Al, Ba, Co, Cr, Fe, Ni) on constate une grande stabilité au cours de la période 1986-2000, aussi l'on considère comme légitime de prendre les concentrations constatées comme enveloppe des concentrations du passé. On applique ces concentrations au volume réel des effluents de ce même type pour chaque année de 1966 à 1986.
- Pour les éléments dont la concentration est systématiquement inférieure à la limite de détection (exemples : Cd, Cr, Hg, Mn, Ni, Pb) on utilise les limites de détection évaluées pour les années 1987 à 1999 induites des méthodes analytiques et du matériel utilisés pendant cette période.

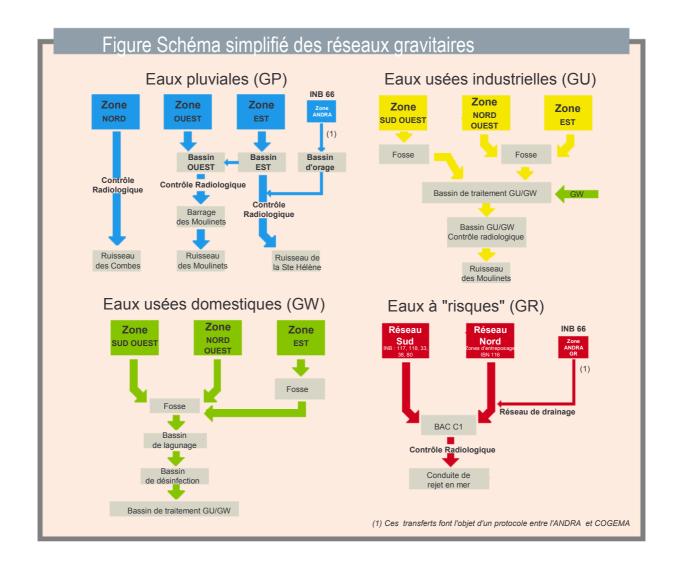
Pour le nickel et le chrome les valeurs de concentrations évaluées sont multipliées par le volume des effluents de type A du fait que ces éléments sont essentiellement présents dans ce type d'effluents.

Par contre pour le mercure, le plomb, le cadmium et le manganèse, les valeurs des concentrations évaluées sont multipliées par le volume total des effluents radioactifs A+V. Les valeurs de mesures reconstituées sont majorantes car elles ne bénéficient pas des diminutions sensibles des limites de détection induites par la nouvelle méthode de mesure par ICP/MS telle qu'utilisée en l'an 2000.

- Pour les autres constituants chimiques rejetés (K, NH4, P, S) l'origine peut en être attribuée à un type d'effluent liquide particulier (principalement le type A). On affecte alors la totalité des rejets annuels des constituants chimiques à ce type d'effluent liquide. On établit la moyenne des concentrations de ces substances dans les effluents pour les années significatives entre 1987 et 2000 (valeurs mesurées mensuellement) de ces constituants dans les effluents du type considéré. Cette valeur moyenne (éventuellement corrigée d'un coefficient pondérateur selon les années) est appliquée au volume réel des effluents du même type des années antérieures.
- Dans les cas particuliers, exemple le soufre, on peut faire une estimation à partir des réactifs utilisés dans le procédé de traitement (acide sulfurique, sulfate de cobalt et de nickel et sulfure de sodium ou d'ammonium, du nitrate de baryum) et des réactions chimiques mises en œuvre.

Validation de cette méthode : les résultats obtenus par cette méthode de reconstitution des rejets chimiques de la période 1966 à 1986 figurent dans **l'annexe N° 5**.

La validation de cette méthode est basée sur la comparaison des résultats de cette méthode d'évaluation avec les données partielles disponibles pour la période 1976-1986, ainsi qu'avec les valeurs connues pour la période 1987-2000.


La comparaison montre que les valeurs calculées par extrapolation, sont dans l'ensemble, plutôt majorantes par rapport à celles qui ont été mesurées dans la période 1987-2000.

Remarque:

Compte tenu des faibles quantités de substances chimiques rejetées dans les autres réseaux d'effluents liquides il a été décidé, par le Groupe Plénier du GRNC, qu'il n'était pas nécessaire d'effectuer les reconstitutions des rejets chimiques des réseaux d'effluents liquides non radioactifs (effluents "à risques", eaux usées industrielles et domestiques et eaux pluviales) pour la période 1966-1986.

2.3.2. Présentation des autres effluents liquides

La figure N° 3 ci-après présente un schéma simplifié des quatre autres réseaux d'effluents liquides

2.3.2.1. Les eaux "à risques" : (GR)

Les eaux dites "à risques" sont constituées :

- des eaux de drainage de certains ateliers, ainsi que celles du Centre de Stockage de la Manche (CSM) et des entreposages de déchets,
- des eaux de pluie, comme celles en provenance de la plate-forme d'entreposage de colis et de châteaux.

Le réseau des eaux "à risques" comprend deux parties : le réseau Sud (appelé N° 1 dans l'annexe N° 6) et le réseau Nord (appelé N° 2 dans l'annexe N° 6) qui comprend les rejets du CSM.

Les eaux "à risques" sont reçues dans des bacs.

Elles sont contrôlées et rejetées dans l'émissaire marin.

Leurs volumes et leurs caractéristiques chimiques mensuels sont présentés dans les tableaux en annexe N° 6.

Nous notons que la charge chimique des réseaux des "eaux à risques" représente environ 3 à 4 % du tonnage des rejets chimiques du site.

2.3.2.2. Eaux usées industrielles et domestiques

les eaux usées industrielles (GU)

Le réseau des eaux usées industrielles recueille les eaux industrielles issues en particulier des fosses de neutralisation des ateliers. Ces eaux peuvent contenir des produits tels que hydrocarbures, acides, bases. Leur traitement est assuré par les ateliers qui restituent des effluents déshuilés et neutralisés.

Le bassin de traitement de 1 000 m³ et un bac de 120 m³ permettent un entreposage et une neutralisation complémentaires de ces effluents.

Un bassin permet l'entreposage des eaux usées industrielles et des eaux usées domestiques en vue de leur contrôle radiologique avant leur rejet dans le ruisseau des Moulinets.

les eaux usées domestiques : (GW)

Les eaux usées domestiques sont des effluents d'origine sanitaire.

Le dimensionnement est établi sur la base de 100 l/j et par personne avec une moyenne de 4 000 personnes présentes sur le site.

Les eaux usées domestiques sont dirigées vers les huit bassins de lagunage. Le lagunage aérobie s'effectue dans des bassins de faible profondeur où la lumière peut pénétrer et favoriser le développement d'algues vertes produisant l'oxygène par photosynthèse, ce qui permet le développement des bactéries épuratrices aérobies.

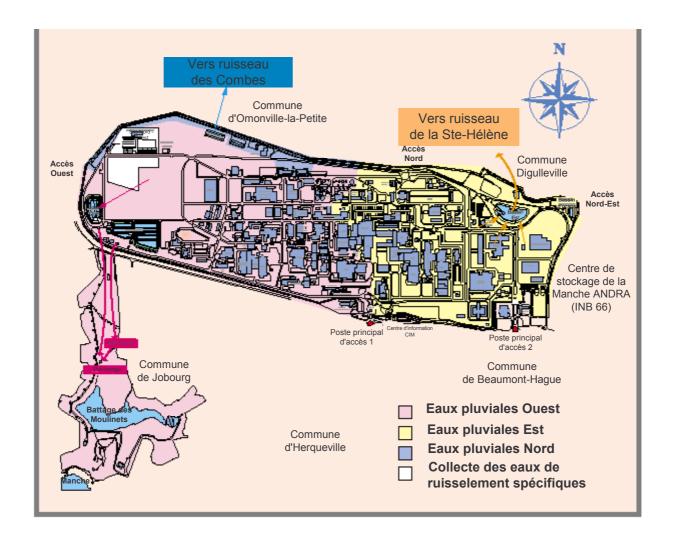
Le contrôle des rejets des eaux usées est soumis aux normes de l'autorisation préfectorale 88.1734 du 22.11.1988.

Les eaux usées domestiques sont reprises par pompage et dirigées vers une unité de chlorationdéchloration qui permet un traitement bactériologique, puis vers le bac complémentaire commun aux eaux usées domestiques et industrielles.

Après contrôle radiologique, les eaux usées domestiques et industrielles sont rejetées dans le ruisseau des Moulinets.

Les bilans mensuels des analyses physico-chimiques et bactériologiques existent depuis début 1988 jusqu'à fin 2 000.

Les analyses concernent 23 rubriques dont 11 substances chimiques (dont azote total, bicarbonates, chlorures, chlore résiduel, hydrazine, hydrocarbures, métaux lourds, nitrates, nitrites, orthophosphate et sulfates).


Les caractéristiques physico-chimiques et bactériologiques de l'ensemble des eaux usées domestiques et industrielles sont présentées dans les tableaux en **annexe N° 7**.

Le volume annuel maximum est estimé à 350 000 m³.

Le produit chimique prédominant en masse est le nitrate (la norme est de 2400 mg/l).

2.3.2.3. Les eaux pluviales (GP)

La figure N° 4 ci-après présente la collecte des eaux pluviales de ruissellement du site

Le réseau recueille les eaux de pluie qui sont drainées et canalisées.

Les eaux usées pluviales s'écoulent vers les bassins versants suivants :

- le bassin versant Est recueille les eaux pluviales de la zone Est. En aval du bassin, les eaux pluviales usées du Centre de Stockage de la Manche sont contrôlées et peuvent être déversées dans le ruisseau de la Sainte-Hélène,
- le bassin versant Ouest recueille les eaux pluviales de la zone Ouest. Après contrôle radiologique, elles sont évacuées, par surverse, au ruisseau des Moulinets via le barrage des Moulinets,
- la bordure du bassin versant Nord recueille les eaux pluviales de la zone Nord-Ouest. Après contrôle radiologique, elles sont évacuées dans le ruisseau des Combes. Il n'est pas effectué d'analyses chimiques dans le ruisseau des Combes car il n'existe pas de réglementation de rejets. On notera que ce réseau d'eaux pluviales du versant Nord draine une petite surface du site.

Les contrôles des eaux pluviales dans le ruisseau des Moulinets et de la Sainte-Hélène sont soumis à l'arrêté préfectoral N° 88.1735 du 22.11.1988.

Les analyses physico-chimiques concernent 7 rubriques dont les composés cycliques hydroxylés, les hydrocarbures et les sels dissous.

Les bilans mensuels des résultats d'analyses existent depuis début 1988.

Les débits instantanés et les caractéristiques des eaux pluviales sont présentés dans le tableau en **annexe N° 8**.

Rejets accidentels : les rejets accidentels et les rejets diffus chroniques ne sont pas connus. Cependant, en pratique, ils aboutiraient principalement dans l'un des réseaux décrits ci dessus.

2.4. Effluents gazeux

Il existe trois types d'effluents gazeux comprenant des constituants chimiques.

Les figures N° 5 et 5 bis ci-après, présentent respectivement les emplacements des principaux émissaires gazeux ainsi que ceux des usines de l'incinérateur et de la chaufferie.

Figure 5 : Emplacement des principaux émissaires gazeux

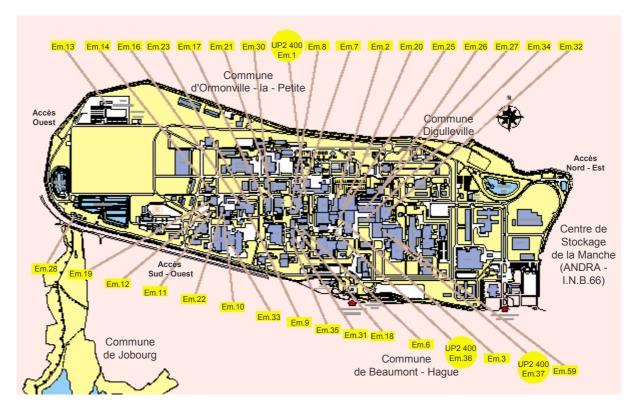
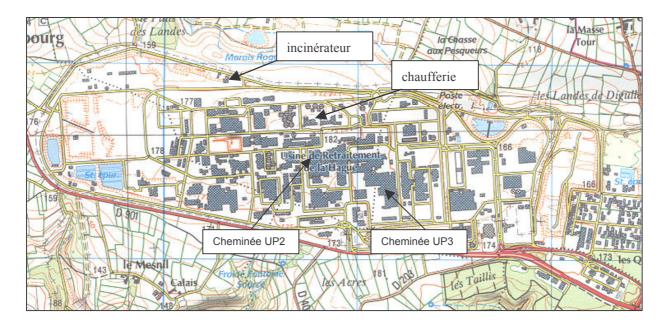



Figure 5 bis : Emplacement des émissaires des usines, de l'incinérateur et de la chaufferie

2.4.1. Les effluents gazeux des INB

Les deux usines UP3 et UP2-800 sont équipées chacune d'une cheminée de 100 mètres de hauteur (émissaires 36 et 37 de la figure N° 5 ci-dessus). Le diamètre de chacune des cheminées est de 2,75 mètres à l'émission atmosphérique.

Le débit et la radioactivité des rejets gazeux de chaque usine sont mesurés en continu.

Les autorisations de rejets gazeux radioactifs des INB de l'établissement sont précisées dans l'arrêté du 27 février 1984 qui complète l'arrêté antérieur du 22 octobre 1980. Elles ne concernent que les limites annuelles de rejets gazeux radioactifs.

Traitement des gaz : les effluents gazeux provenant des équipements de procédé subissent des traitements successifs d'épuration en fonction de leur nature chimique.

Le tritium est piégé, quasi exclusivement, sous forme d'eau tritiée qui est rejetée en mer avec les effluents de type V.

Les aérosols sont arrêtés par le lavage des gaz, le dévésiculage et le passage à travers une succession de filtres de très haute efficacité (rendement d'épuration d'un seul filtre supérieur à 99,9 %).

L'iode (composé essentiellement d'iode 129) et le carbone 14 libérés lors de la dissolution du combustible, sont piégés, partiellement pour le carbone 14, dans la colonne de lavage alcalin. Une petite partie de l'iode résiduel est retenue dans les pièges composés de support de catalyseur imprégnée de nitrate d'argent. La solution alcaline résultante est diluée dans les eaux tritiées puis rejetée en mer avec les effluents liquides de type V (voir ci-dessus).

Les vapeurs nitreuses sont oxydées et recombinées en acide nitrique. Cet acide est recyclé dans le procédé.

Les cheminées des usines UP3 et UP2-800 ont, toutes deux, un débit moyen réel annuel égal à environ 120 000 m³/h et la température d'émission des gaz est de 25°C. Les rejets atmosphériques des usines sont effectifs depuis 1966.

Les principales substances chimiques gazeuses, rejetées dans les cheminées des usines, qui ont fait l'objet de mesures sont les oxydes d'azote et de soufre, l'oxyde de carbone, le méthane, l'ammoniaque, l'hydrazine, les poussières et les métaux (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sn, Te, Tl, V, Zn).

L'évaluation quantitative des métaux a été effectuée à partir de l'analyse du filtrat du filtre en papier. L'analyse a été réalisée par spectrométrie de masse et par spectrométrie d'émission atomique.

Le procédé industriel de retraitement étant stabilisé depuis 1976, il est raisonnable de considérer que les valeurs des concentrations mesurées sont extrapolables pour les autres années. Les rejets quantitatifs annuels sont calculés en prenant en compte les débits gazeux rejetés et le tonnage de combustibles retraités de 1966 à 2000.

Remarque: Les rejets gazeux chimiques de l'usine UP2-400 (UNGG) n'ont pas été mesurés. Cette usine ne fonctionne pas depuis plusieurs années; cependant on peut estimer que les quantités de rejets gazeux sont proportionnels au tonnage de combustibles traités. Dans les tableaux du § 2.4.1., UP2 signifie UP2 800 de 1966 à 1994 et UP2 800 de 1994 à l'an 2000.

Données et hypothèse de calcul : les données permettant de calculer les rejets massiques de polluants chimiques sont :

- Les concentrations (en mg/m³) pour chacune des substances dans les rejets, correspondant au traitement annuel de 1600 tonnes de combustibles usés (**Tableau N° 4**),
- Ces résultats sont basés sur une campagne de mesures effectuée sur la cheminée de l'usine UP3 en 1996.

<u>Tableau N° 4 : Concentrations des substances mesurées pour une production 1600 tde combustibles usés (mg/m³)</u>

As	Cd	Co	Cr	Cu	Hg	Mn
< 6,2 10 ⁻⁶	< 3,1 10 ⁻⁷	< 1,5 10 ⁻⁷	< 8,0 10 ⁻⁷	< 6,0 10 ⁻⁵	< 3,1 10 ⁻⁶	< 3,9 10 ⁻⁶

Ni	Pb	Sb	Sn	Te	TI	V	Zn
< 2,0 10 ⁻⁵	< 8,0 10 ⁻⁷	< 4,6 10 ⁻⁷	< 4,6 10 ⁻⁷	< 4,6 10 ⁻⁷	< 1,2 10 ⁻⁷	< 6,2 10 ⁻⁷	< 4,0 10 ⁻⁵

CH ₄	СО	NH ₄	N ₂ H ₄	NOx	N ₂ O	SO ₂	Poussières
< 50	< 82	< 0,06	0,04	< 67	< 130	2,7	< 0,2

Les tonnages annuels de combustibles traités par les usines de 1966 à 2000

Tableau N° 5 : Tonnages de combustibles usés retraités de 1966 à 2000

	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
UP2	57	98	189	228	237	128	250	213	635	441	218	366
UP3	0	0	0	0	0	0	0	0	0	0	0	0
total	57	98	189	228	237	128	250	213	635	441	218	366

	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
UP2	390	344	356	351	380	338	440	460	408	493	346	430
UP3	0	0	0	0	0	0	0	0	0	0	0	30
total	390	344	356	351	380	338	440	460	408	493	346	460

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
UP2	331	311	220	354	576	758	862	850	811	849	850
UP3	195	351	448	600	700	801	819	820	822	713	342
total	526	662	668	954	1276	1559	1681	1670	1633	1562	1192

On estime que les rejets des usines s'effectuent 24h/24 et que les deux installations (UP2 et UP3) fonctionnent selon les mêmes procédés et donc que les rejets sont identiques pour un même tonnage retraité. De plus, on considère que, lorsque les concentrations ont des valeurs inférieures au seuil de détection, comme c'est ici le cas pour toutes les substances sauf l'hydrazine et le dioxyde de soufre, on utilise la valeur du seuil (calcul enveloppe).

Méthode de calcul : à partir des concentrations données pour une production de 1600 t de combustibles, les concentrations moyennes dans les rejets sont calculées annuellement de 1966 à 2000 au prorata des tonnages retraités chaque année, soit :

$$C_i(a) = C_i(m) \times \frac{P(a)}{1600}$$
 (Équation 1)

avec $C_i(a)$: Concentration en polluant i dans les rejets de l'année a (kg/m³),

 $C_i(m)$: Concentration en polluant i pour une production moyenne de 1600 t (kg/m³),

P(a): Production des usines pour l'année a (t).

Les masses rejetées sont alors calculées selon l'équation 2 :

$$M_i(a) = C_i(a) \times D \times T(a)$$
 (Équation 2)

avec $M_i(a)$: Masse de polluant i rejetée l'année a (kg/a),

D: Débit de rejet moyen (m³/h),

T(a): Temps de fonctionnement annuel des rejets atmosphériques (soit 8760 h/a).

La granulométrie des aérosols solides n'est pas mesurée, cependant compte tenu de la présence d'une succession de filtre à très haute efficacité, nous estimons que la granulométrie médiane doit être inférieure à 1 μ m.

Résultats : les masses des substances rejetées annuellement sont données dans l'annexe N° 9.

Nous observons que les rejets chimiques émis par les cheminées des deux usines de retraitement ne contribuent que très faiblement au total des masses des rejets de substances chimiques par rapport à celles émises par l'incinérateur et la chaufferie.

Ce fait est dû aux traitements des gaz de procédé (par voie humide dans des colonnes d'absorption et par voie sèche par de nombreux niveaux de filtres à très haute efficacité (THE) supérieure à 99,9 % pour un seul filtre).

2.4.2. Les effluents gazeux chimiques des autres installations

2.4.2.1. Incinérateur de déchets banals

L'incinérateur de déchets banals ménagers, situé dans la partie nord du site, a une capacité maximale de 1 tonne de déchets par heure et de 1 700 tonnes environ par an.

Les déchets traités sont des ordures ménagères, des déchets papiers, cartons, bois etc. provenant des restaurants, du magasin central, des services administratifs, des ateliers hors zones nucléaires.

A titre d'exemple au cours de l'année 2000 l'incinérateur a traité pour l'essentiel du papier, du carton et du bois. Les déchets plastiques n'ont représenté que 1 à 2 % du total des déchets incinérés.

Les fumées sont évacuées par une cheminée de 16 mètres de hauteur et de diamètre à l'émission de 0.8 mètre.

La mise en service date de juin 1995.

L'épuration des fumées est effectuée par voie liquide à l'aide d'une suspension de chaux puis par voie sèche par des filtres à manches décolmatables par chasses d'air pulsé.

Les effluents liquides générés sont recyclés dans le procédé d'épuration des fumées.

Les contrôles de rejets de fumées sont soumis à l'arrêté ministériel (Industrie et Commerce Extérieur) N° 996.92 du 18 juin 1992.

Le débit moyen annuel des fumées est d'environ 28 400 Nm³/h à 47°C ce qui correspond à un débit réel moyen de 30 500 m³/h.

Les principales mesures chimiques concernent les poussières totales, le monoxyde de carbone (CO), le gaz chlorhydrique (HCI), les composés organiques volatils (COV), les métaux (arsenic, cadmium, chrome, cuivre, manganèse, mercure, nickel et plomb) le gaz fluorhydrique (HF), l'anhydride sulfureux (SO₂), les oxydes d'azote (NO_x), les dioxines et furannes.

On notera que les résultats des contrôles de dioxines (polychlorodibenzoparadioxines ou PCDD) et furannes (polychlorodibenzofuranes ou PCDF) effectués en 1998 et en 2000 (prélèvement par l'APAVE selon la technique EN 1948-NFX 43-324 et analysés par le laboratoire CARSO à Lyon selon la norme EN 1948-1), exprimés en équivalent toxicologique international total (I-TEF), sont respectivement de 5 et 1,9 ng par Nm³ (mesures ramenées aux conditions normales de température et de pression) de fumées.

Les résultats des mesures de dioxines dans les fumées de l'incinérateur sont présentés en **Annexe 10**.

Le bilan quantitatif des rejets des substances chimiques est réalisé à partir des mesures de concentration dans les fumées, en prenant en compte le débit moyen horaire des fumées et du nombre d'heures de fonctionnement noté chaque année de 1995 à 2000.

Données et hypothèses de calcul : les données permettant de calculer les rejets massiques des substances chimiques sont :

- Les résultats de mesures réalisées une à deux fois par an de 1995 à 2000 au niveau de l'émissaire de rejet (**Tableau N° 6**).
- Les temps de fonctionnement annuels, soit 1123 h en 1995, 1989 h en 1996, 3334 h en 1997, 2529 h en 1998, 1768 h en 1999 et 1825 h en 2000.

Tableau N° 6 : Résultats de mesures des substances dans les rejets incinérateur (mg/Nm³)

Substances	29/06/95	13/09/96	27/02/97	24/06/97	27/02/98	27/02/99	30/06/99	01/03/00	17/10/00
As	nm*	0,01	0,034	nm	0,0098	0,005	nm	0,006	0,01
Cd	nm	0,313	0,455	nm	0,036	0,152	nm	0,757	0,1
Cu	nm	0,391	0,363	nm	0,5681	0,56	nm	1,618	0,32
Cr	nm	0,478	0,198	nm	2,0143	0,0102	nm	0,061	< 0,02
Mn	nm	0,173	0,76	nm	0,2273	0,027	nm	0,091	0,03
Hg	nm	0,148	0,0008	nm	0,006	0,034	nm	0,03	< 0,06
Ni	nm	0,565	0,292	nm	0,0052	0,01	nm	0,03	< 0,01
Pb	nm	6,74	8,95	nm	7,49	9,03	nm	23,03	4,41
SO2	nm	240	25,2	nm	nm	nm	nm	nm	370
NOX	171,6	100	23,0	nm	nm	nm	nm	nm	110
CO	16	80	45,7	23	60	130	17	21	38
HCI	230,2	96	17,8	9	7	10	48,5	2	7,6
HF	nm	5	0	nm	0,4	nm	0,1	0,2	< 0,3
COV**		230	5,95	18	12	28	3,6	5	5
Poussières	60,2	170	26,8	100	155	227	115	154	160
Dioxines +									
furanes	nm	nm	nm	nm	5,0 10 ⁻⁶	nm	nm	nm	1,9 10 ⁻⁶
(I-TEQ)***									

^{* :} non mesuré = nm

La "quantité d'équivalent toxique" (I – TEQ) s'obtient en multipliant la concentration d'un PCDD ou d'un PCDF par son facteur d'équivalent toxicologique international (I – TEF) pour chaque constituant.

Remarque : Les valeurs des concentrations des substances du **tableau N° 6** ci-dessus sont exprimées dans les conditions dites réglementaires, définies par l'article 2 de l'arrêté du 25 janvier 1991,

soit:

Température = 273°K

Pression: 101,3 kilopascals après déduction de la vapeur d'eau (gaz secs),

Teneur en oxygène : résultats rapportés à une teneur en oxygène de 11 %.

Tout comme pour les rejets atmosphériques des cheminées d'usines, lorsque les résultats de mesures sont inférieurs au seuil de détection, on prend la valeur seuil comme une donnée. N'ayant pas de résultats de mesures pour toutes les substances chaque année, on considère de plus que la composition moyenne des rejets est équivalente d'une année sur l'autre, et est égale à la moyenne des résultats des neuf campagnes de mesures.

Méthode de calcul : les masses de substances chimiques rejetées annuellement sont calculées selon la même méthode celle utilisée pour les rejets d'usines :

$$M_i(a) = C_i \times D \times T(a)$$
 (Équation 3)

avec : $M_i(a)$ Masse de la substance i rejetée l'année a en kg/a,

C_i: Concentration moyenne en polluant i dans les rejets (kg/Nm³),

 \overline{D} : Débit de rejet moyen (Nm³/h),

T(a): Temps de fonctionnement annuel des rejets atmosphériques (h/a).

^{** :} composés organiques volatiles = COV

^{***} Toxic Equivalent Quantity = I – TEQ

ostances rejetées (en mg/m³ réels)

13/09/1996	27/02/1997	24/06/1997	27/02/1998	27/02/1999	30/06/1999	01/03/2000	17/10/2000	moyennes
33300	35000	22000	25500	29200	29600	30000	29000	
5600	4645	4700	4400	6950	5750	5000	5300	
1.7E-03	4.5E-03		1.7E-03	1.2E-03		1.0E-03	1.8E-03	0.002
5.3E-02	6.0E-02		6.2E-03	3.6E-02		1.3E-01	1.8E-02	0.050
6.6E-02	4.8E-02		9.8E-02	1.3E-01		2.7E-01	5.8E-02	0.112
8.0E-02	2.6E-02		3.5E-01	2.4E-03		1.0E-02	3.7E-03	0.078
2.9E-02	1.0E-01		3.9E-02	6.4E-03		1.5E-02	5.5E-03	0.033
2.5E-02	1.1E-04		1.0E-03	8.1E-03		5.0E-03	1.1E-02	0.008
9.5E-02	3.9E-02		9.0E-04	2.4E-03		5.0E-03	1.8E-03	0.024
1.1E+00	1.2E+00		1.3E+00	2.1E+00		3.8E+00	8.1E-01	1.734
4.0E+01	3.3E+00						6.8E+01	37.108
1.7E+01	3.1E+00						2.0E+01	25.152
1.3E+01	6.1E+00	4.9E+00	1.0E+01	3.1E+01	3.3E+00	3.5E+00	6.9E+00	9.459
1.6E+01	2.4E+00	1.9E+00	1.2E+00	2.4E+00	9.4E+00	3.3E-01	1.4E+00	12.945
8.4E-01			6.9E-02		2.5E-02	3.3E-02	5.5E-02	0.205
2.9E+01	3.6E+00	2.1E+01	2.7E+01	5.4E+01	2.2E+01	2.6E+01	2.9E+01	25.867
			9.0E-07				3.5E-07	6.22E-07

La granulométrie des aérosols solides n'est pas mesurée. Cependant, compte tenu de la connaissance d'installations comparables, la granulométrie médiane doit être inférieure à $1~\mu m$.

Résultats: l'ensemble des masses annuelles (de 1995 à 2000), en kg par an, rejetées par l'incinérateur et calculées selon la méthode ci-dessus, est présenté en **annexe N° 10**. Les résultats détaillés des analyses des dioxines (PCDD) et des furanes (PCDF) effectuées en 1998 et en 2000 par COGEMA La Hague figurent en **annexe N° 10**.

2.4.2.2. Centrale de production de calories (chaufferie)

La centrale de production de calories (appelée CPC), implantée dans la partie nord du site, comporte trois chaudières au fioul de puissance unitaire égale à 23,2 MW. L'installation fonctionne 24h/24.

Les gaz de combustion de chaque chaudière sont évacués par une cheminée composée de trois conduits séparés de 50 mètres de hauteur et de diamètre de 1,3 mètre par conduit.

La mise en service date de 1964.

Le débit réel moyen annuel de fumée, sur l'ensemble de la période d'émission, est de 3 fois 15 000 Nm³/h. La température moyenne d'émission des gaz est de 250°C, ce qui donne un débit réel moyen annuel, sur l'ensemble de la période, d'émission de 3 x 29 330 m³/h. La température des gaz varie de 200 à 400°C, la moyenne annuelle est de 250°C.

Les principales substances chimiques mesurées annuellement sont le dioxyde de soufre (SO_2) , les oxydes d'azote (NO_x) , et les poussières, ainsi que les métaux : vanadium, nickel, fer, calcium, titane, sodium ainsi que le silicium.

Bilan quantitatif des rejets annuels :

Dioxyde de soufre, oxydes d'azote et poussières : le bilan des rejets annuels de 1989 à 2000 pour les substances suivantes : dioxyde de soufre (SO_2) , oxydes d'azote en équivalent NO_2 et poussières a été effectué à partir des évaluations quantitatives disponibles dans les déclarations annuelles de l'établissement concernant la taxe parafiscale sur la pollution atmosphérique.

Ce bilan prend en compte les émissions de SO₂, de NO_x et des poussières générées par les trois chaudières (plus de 99 % des consommations de fioul) ainsi que celles des groupes électrogènes de secours utilisant du fioul domestique (environ 1% de la consommation de fioul).

Le fioul domestique utilisé pour le fonctionnement des groupes électrogènes a une teneur en soufre très inférieure à celui du fioul lourd. Les groupes électrogènes fonctionnent de façon intermittente en cas de panne de l'alimentation électrique.

Pour les années antérieures à 1989, une reconstitution depuis 1966 a été effectuée à partir des quantités annuelles de vapeurs produites et des quantités et qualité de fuel consommé, en prenant en compte les valeurs des mesures des années récentes, des concentrations des substances chimiques : SO₂, équivalent NO₂ et poussières.

Rejets de métaux : les bilans annuels de rejets des métaux ont été effectués à partir des valeurs mesurées de leur concentration dans l'air, de la valeur réelle moyenne du débit de gaz et du nombre d'heures de fonctionnement de chacune des chaufferies évalué à partir de la production annuelle de tonnes de vapeur produite.

Données et hypothèses de calcul : les données existantes concernant la chaufferie sont :

• Les résultats de mesures récentes, donnés en mg/Nm³ et rapportés à une teneur de 3 % d'oxygène (**Tableau N° 7**).

Tableau N° 7 : Concentrations mesurées dans les rejets chaufferie rapportées à 3 % de O2

Substances	Concentration (mg/Nm³ à 3 % de O₂)
Са	< 0,1
Fe	3,2
Na	2,4
Ni	2,8
NO _X	784
Si	3,5
SO ₂	3551
Ti	< 0,1
V	7,9
Poussières	195

- Le débit de rejet moyen de chacune des chaudières, qui est de 15 000 Nm³/h;
- Les productions de vapeurs totales annuelles de la chaufferie de 1964 à 2000, fournies dans le **tableau N° 8** sachant que la production moyenne et de 22,7 tonnes de vapeur par heure ;

Tableau N° 8 : Productions annuelles de vapeur de la chaufferie (milliers de tonnes)

1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	
74	130	147	155	163	163	164,5	153,6	157,8	155,7	178,4	173,5	
												_
1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	
158,9	185,2	189,7	190,2	208	221	219	229	261	278	278	306,7	
												-
1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
373,9	405,2	313	422,9	432,2	462,8	461,8	579,6	638,9	600,6	581,4	572,1	554,9

 Les quantités de SO₂, NO_X et poussières rejetées données à partir des déclarations fiscales de l'exploitant (quantités utilisées sur le site pour la chaufferie et les groupes diesels de secours) et des compositions du fuel fournies par le fabricant (**Tableau N° 9**).

<u>Tableau N° 9 : Masses annuelles de SO₂, NO_X et poussières déclarées (masse en tonnes)</u>

Substances	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
SO ₂	1570	-	1703	1902	1971	1552	1211	2581	2237	2060	1854	1220
NO_X	-	-	201	196	218	200	152	276	257	240	245	150
Poussières	ı	-	-	-	-	-	-	43,9	41,1	40	36	33,7

- : absence de valeur

Méthode de calcul : en 1999, les changements intervenus (changement de type de fuel et modification des brûleurs et des conditions de combustion) ont entraîné des modifications des quantités de gaz rejetées. Ces changements n'ont théoriquement pas eu d'influence sur les rejets des métaux.

Deux méthodes de calculs distinctes sont donc adoptées pour, d'une part, les aérosols, et d'autre part, les gaz et poussières.

Les aérosols : les rejets massiques des aérosols sont reconstitués à partir des résultats de mesures, considérés comme représentatifs de toute la période de fonctionnement de l'installation. Pour ce faire, les résultats des mesures doivent être rapportés à la teneur réelle en oxygène dans les rejets, soit 3,8 % d' O_2 au lieu de 3 %, soit :

 $C_{i(3,8\%)} = C_{i(3\%)} X 21-3,8 / 21-3$

De plus, les données présentant des valeurs inférieures au seuil de détection sont prises égales à ce seuil dans les calculs.

Tableau N° 10 : Concentrations mesurées à 3,8 % de O₂ (mg/Nm³)

Substances	Concentration (mg/Nm³ à 3,8 % de O₂)
Ca	<0,1
Fe	3,1
Na	2,3
Ni	2,7
Si	3,3
Ti	<0,1
V	7,5

Les masses de substances chimiques rejetées annuellement sont alors calculées selon le même principe que pour usines et incinérateur, c'est à dire par multiplication des concentrations ramenées à la teneur réelle en oxygène, par le débit de rejet moyen et par le temps de fonctionnement annuel de l'installation (cf. Equation 3).

Les temps de fonctionnement de l'installation ne sont pas fournis directement et doivent être calculés à partir des données annuelles de production de vapeur :

$$T(a) = \frac{P_{vap}(a)}{P_{vap}(m)}$$
 (Équation 4)

avec T(a): Temps de fonctionnement annuel des rejets atmosphériques (h/a).

 $P_{vap}(a)$: Production de vapeur pour l'année a (t/a),

 $P_{vap}(m)$: Production de vapeur moyenne horaire (soit 22,7 t/h).

Les gaz et poussières : les rejets de gaz et poussières sont calculés à partir des valeurs du tableau N° 10 et au prorata des valeurs des productions annuelles de vapeur.

Résultats : le tableau des résultats des mesures effectuées dans les gaz de la chaufferie est présenté en **annexe N° 12**.

Commentaires : les dispositions suivantes ont été prises, en 1999, afin de diminuer les rejets de SO₂ et de NO₃ :

- modification des brûleurs et des conditions de combustion.
- changement de qualité de fuel par passage du fuel à 3,7 % de soufre au fuel de qualité BTS (basse teneur en soufre) à moins de 2 % de soufre.

Les dysfonctionnements éventuels de l'installation ne sont pas connus et donc les rejets chimiques correspondants non mesurés.

Autres émissaires gazeux: les rejets des autres émissaires gazeux du site ne sont pas pris en compte dans l'étude car ils concernent la ventilation des locaux et leurs rejets de substances chimiques sont infimes par rapport à ceux générés par la chaufferie et l'incinérateur.

Remarque: Dans le cadre de sa première mission, le Groupe Radiologique Nord Cotentin a publié en juin 1999 l'inventaire des rejets radioactifs liquides et gazeux des installations COGEMA La Hague.

Compte tenu de la période radioactive de chaque élément radioactif il est possible de traduire l'activité émise en masse de l'élément chimique.

À l'exception de l'iode 129, dont la masse rejetée en 1999 est de l'ordre de 200 kilogrammes, tous les autres radionucléides rejetés en milieu marin ou dans l'atmosphère concernent des quantités annuelles très inférieures au kilogramme et n'apparaissent donc pas dans la liste des substances chimiques retenues pour cette étude.

Par exemples les rejets massiques de quelques radionucléides pour l'année 1996 sont :

³ H : 0,5 gramme

¹⁴ C : 160 grammes

³⁶ CI : 1000 grammes

⁹⁰ Sr : 2 grammes

⁷⁵ Se : 1 microgramme

¹⁰⁶ Ru : 0,1 gramme

¹²⁵ Sb : 50 milligrammes

¹³⁴ Cs : 3 milligrammes

¹³⁷ Cs : 1 gramme

²³⁹ Pu : 2 grammes

3. Inventaire des données existantes (1987-2000)

- 3.1. Inventaire des effluents radioactifs (A+V) : les valeurs mensuelles des volumes, des flux et des concentrations de 26 éléments et substances chimiques et de l'uranium (voir les annexes N° 2 et 3)
- 3.2. Inventaire des autres effluents liquides et radioactifs (voir les annexes N° 6, 7 et 8)
- 3.3. Inventaire des rejets d'effluents gazeux (usines, incinérateur et chaufferie) (voir les annexes N° 9, 10, 11)

3.4. Techniques d'analyses chimiques (voir l'annexe N° 4)

3.5. Produit de dégradation du solvant TBP – TPH (voir l'annexe N° 13)

4. Inventaire des données reconstituées (1966-1986)

(voir l'annexe N° 5)

Annexes

COGEMA La Hague

Annexe N° 1

Liste des 330 substances approvisionnées sur le site de COGEMA La Hague

Années 1994-1999

	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
R POUR ALTUGLASS - PÉREMPTION APPOSEE DURCISSEUR)	0219991	ENS	LECOUFLE	0	2	3	2	1	6	COLLES
DLLAGE SUR METAUX - ÉREMPTION APPOSEE LITRE)	0219940	BI1	LECOUFLE	0	1	2	2	2	5	COLLES
ISER AVEC ARALDITE DATE DE PEREMPTION 200 GRAMMES)	0220175	PBG	LECOUFLE	14	9	15	29	7	10	COLLES
TILISER AVEC ARALDITE ATE DE PEREMPTION 160 GRAMMES)	0220213	B1G	LECOUFLE	14	9	20	26	16	25	COLLES
6 + DURCISSEUR E DE PEREMPTION NCE DES TUBES 16 5)	0220078	L02	LECOUFLE	156	164	190	204	227	266	COLLES
LISER AVEC ARALDITE MPTION APPOSES SUR AMMES)	0220183	PBG	LECOUFLE	0	8	1	1	0	0	COLLES
ILISER AVEC ARALDITE PTION APPOSES SUR AMMES)	0220205	TU1	LECOUFLE	0	7	1	2	0	0	COLLES
LISER AVEC ARALDITE URE AVEC DATE DE DITE DE 200 GRAMMES)	0220191	PBG	LECOUFLE	1	41	0	3	2	7	COLLES
TILISER AVEC ARALDITE RE AVEC DATE DE TUBE DE 80 GAMMES)	0220221	TU0	LECOUFLE	1	7	10	6	2	7	COLLES
TIK AVEC DATE DE (BIDON DE 1 LITRE)	0219185	BI1	LECOUFLE	50	53	66	40	31	29	COLLES
VC AVEC DATE DE JBE DE 125 GRAMMES)	0444383	TU3	LECOUFLE	25	64	67	40	33	116	COLLES
N DE 1 LITRE)		BI1	JAMESWALKER	33	26	23	21	32	20	TRAITEMENT DE SURFACE
l° 2	(ALTULOR)	PCE	JAMESWALKER	7	6	14	4	9	6	TRAITEMENT DE SURFACE
RAGEL SANIT POUR I DE 60 LITRES)	NEUTRAGEL SANIT	BJ6	CODICA	0	0	3	0	0	0	PRODUITS CHIMIQUES ET DE LABO
S D'UTILISATION : -40 A DIODES, TRANSISTORS, 20 GRS)	SERSILI (TECHNOUTIL)	PCE	MAINCO							TRAITEMENT DE SURFACE
OL	GRAPHISTRAL	PCE	MAINCO	7	15	11	22	17	21	TRAITEMENT DE SURFACE

	D/ff	11.267	F			07		0.5	0.4	0
	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
FURES CONTENANT DU L METHYLIQUE ET UN JON DE 35KG)	GELYSOL 07 (TENSILOR)	BIJ	MAINCO	10	9	13	12	6	15	TRAITEMENT DE SURFACE
OURD DETERGENT E 200 LITRES)	40045.12	FU3	GAMLEN	16	9	7	14	14	24	TRAITEMENT DE SURFACE
OON DE 63 LITRES)	(MOBIL)	BIK	MAINCO	0	1	2	0	0	0	PRODUITS CHIMIQUES ET DE LABO
ERIVE DU PETROL)	0229180	BIA	LECOUFLE	0	0	0	2	3	0	PRODUITS CHIMIQUES ET DE LABO
FUITE D'HUILE (GAINE ANTES) (CARTON DE 30)	404(ITEM) (MARGOTTINBRUN)	C30	MAINCO	1	1	0	0	0	4	TRAITEMENT DE SURFACE
i/90 (SAC DE 20KG)	SEPIOLITE TOLSA	SAK	SOBREP	14	39	30	59	47	112	TRAITEMENT DE SURFACE
OUR ELIMINATION DES G)	1568-2000	P2K	MERCK	0	1	0	3	5	5	TRAITEMENT DE SURFACE
DDELE STANDARD - EN DEE AVEC INDICATEUR KG)	SOLFIX 1 (SOLETANCHE)	SBK	MAINCO	1	0	14	2	26	0	TRAITEMENT DE SURFACE
RB" POUR ABSORPTION E 500 G)	2051.0500	B5G	MERCK	5	0	8	16	0	2	TRAITEMENT DE SURFACE
SABLE A FROID (BIDON	SPACANET 3026 (SPCA)	B18	MAINCO	0	0	0	5	1	2	TRAITEMENT DE SURFACE
2 COMPOSANTS (A+B) - R BETON ANCIEN - /BOIS ET REVETEMENT B)	0227110	KIT	LECOUFLE	1	0	1	0	0	0	COLLES
IM3)		PCE	AIRLIQUIDE	0	1	2	1	6	3	PRODUITS CHIMIQUES ET DE LABO
UEL PORTATIF		PCE	AIRLIQUIDE	6	8	4	7	4	13	PRODUITS CHIMIQUES ET DE LABO
YDE DE CARBONE EN TONNEE 38KG TEINTE TEILLE AVEC RACCORD IR (TP)		PCE	AIRLIQUIDE	2	5	0	7	0	3	PRODUITS CHIMIQUES ET DE LABO
TYPE B42 TEINTE ET DE BOUTEILLE AVEC LLE 5M3)		ВТ0	AIRLIQUIDE	33	29	28	36	34	30	PRODUITS CHIMIQUES ET DE LABO
PRESSION MAXI 156B - T DE BOUTEILLE AVEC DE 11 M3)		BT2	AIRLIQUIDE	6	3	3	7	4	9	PRODUITS CHIMIQUES ET DE LABO
OUTEILLE TYPE B50 - TIFICATION BLEUE - CORD TYPE G		PCE	AIRLIQUIDE	1	3	3	1	4	5	PRODUITS CHIMIQUES ET DE LABO
ATE DE PEREMPTION DE 125 ML)	0219177	FE2	LECOUFLE	296	411	377	315	342	434	COLLES
UILES AVEC DATE DE (TUBE DE 150 ML)	0219959	FE3	LECOUFLE	0	34	12	34	30	35	COLLES

	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
YANOACRYLATE RAPIDE PPOSEE SUR L'ARTICLE ES)	0221333	F6G	LECOUFLE	268	271	222	267	306	261	COLLES
YANOACRYLATE MULTI- MPTION APPOSEE SUR MMES)	0221309	TU4	LECOUFLE	2254	2378	2521	2735	2423	2025	COLLES
E RAPIDE (TEMPS DE DATE DE PEREMPTION 50 GRAMMES)	0219533	B8G	LECOUFLE	26	14	17	33	15	18	COLLES
PEREMPTION APPOSEE RAMMES)	0219908	TU5	LECOUFLE	5	1	2	4	2	9	COLLES
ENNE - COULEUR BLEU E SUR L'ARTICLE	0221120	FML	LECOUFLE	203	190	287	242	224	218	COLLES
DES CANALISATIONS ET E PEREMPTION APPOSEE 50 ML)	0221252	FML	LECOUFLE	40	63	72	89	66	51	COLLES
RESISTANCE - COULEUR ISEE SUR L'ARTICLE	0221155	FML	LECOUFLE	35	31	39	43	40	32	COLLES
EITE - COULEUR ROUGE E SUR L'ARTICLE	0221244	FML	LECOUFLE	12	27	17	26	31	25	COLLES
CIRCUIT FRIGORIFIQUE - PTION APPOSEE SUR) ML)	0221279	FML	LECOUFLE	0	7	2	3	8	0	COLLES
TE DES RACCORDS R BRUN AVEC DATE DE (FLACON DE 50 ML)	0221236	FML	LECOUFLE	125	80	146	147	96	137	COLLES
REE - COULEUR VIOLET E SUR L'ARTICLE	0221112	FML	LECOUFLE	23	38	25	16	23	22	COLLES
POUR ANALYSES	21.200.297	F1K	PROLABO	7	18	6	6	16	18	PRODUITS CHIMIQUES ET DE LABO
(FLACON DE 1 L)	22.081.292	F1L	PROLABO	0	0	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
ALYSES (FLACON DE 1 L)	23.882.296	F1L	PROLABO	0	1	1	0	1	1	PRODUITS CHIMIQUES ET DE LABO
1 20 POUR ANALYSES	478137	F1K	CARLOERBA	210	168	174	145	89	62	PRODUITS CHIMIQUES ET DE LABO
PUR (FLACON DE 5 KG)	27.652.367	BI9	PROLABO	0	0	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
SES (FLACON DE 1 L)	400971	F1L	CARLOERBA	18	24	11	34	59	80	PRODUITS CHIMIQUES ET DE LABO
E 5 LITRES)	528203	BIA	CARLOERBA	64	70	66	62	54	52	PRODUITS CHIMIQUES ET DE LABO
FLACON DE 1 L)	401391	F1L	CARLOERBA	516	401	626	404	326	322	PRODUITS CHIMIQUES ET DE LABO

	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
0% POUR ANALYSES	401425	BI5	CARLOERBA	0	0	0	0	3	0	PRODUITS CHIMIQUES ET DE LABO
N DE 250 GRS)	20.155.237	FBG	PROLABO	35	31	29	43	27	30	PRODUITS CHIMIQUES ET DE LABO
POUR LA SYNTHESE	800412.1000	F1K	MERCK	18	0	0	12	12	36	PRODUITS CHIMIQUES ET DE LABO
,19 - POUR ANALYSES	20.252.290	F1L	PROLABO	202	167	174	192	256	311	PRODUITS CHIMIQUES ET DE LABO
NALYSES A-1 MOLECULE) GRS)	20.276.235	FBG	PROLABO	0	12	18	36	30	4	PRODUITS CHIMIQUES ET DE LABO
TIQUE (SEL DISODIQUE) LACON DE 1 KG)	8418.1000	F1K	MERCK	0	0	0	0	2	4	PRODUITS CHIMIQUES ET DE LABO
(FLACON DE 1 L)	20.320.295	F1L	PROLABO	0	0	0	1	6	4	PRODUITS CHIMIQUES ET DE LABO
SES ISO (FLACON DE 1L)	456.1000	F1L	MERCK	1298	1060	742	1173	1208	1889	PRODUITS CHIMIQUES ET DE LABO
I,40 (FLACON DE 1 L)	441.1000	F1L	MERCK	100	121	118	157	116	161	PRODUITS CHIMIQUES ET DE LABO
DRMAPUR 85% D:1,70 .)	20.624.320	F2L	PROLABO	8	5	7	13	17	397	PRODUITS CHIMIQUES ET DE LABO
LLISE (SAC DE 25 KG)		SBK	SCC	429	926	924	856	911	677	PRODUITS CHIMIQUES ET DE LABO
MIQUE) (FLACON DE 1 KG)	306507	F1K	CARLOERBA	1	12	12	3	35	74	PRODUITS CHIMIQUES ET DE LABO
IR POUR ANALYSES RS)	20.674.231	FBG	PROLABO	0	0	0	0	1	0	PRODUITS CHIMIQUES ET DE LABO
1,83 POUR ANALYSES	20.700.243	F1L	PROLABO	48	79	107	120	194	275	PRODUITS CHIMIQUES ET DE LABO
(DESHYDRATANT) AVEC LACON DE 1 KG)	A48.138.01	F1K	FISHERSCIENTIFIC	75	346	226	754	380	370	PRODUITS CHIMIQUES ET DE LABO
DEGRES (ETHANOL)	20.827.365	BIA	PROLABO	790	870	735	878	1349	1706	PRODUITS CHIMIQUES ET DE LABO
CS POUR ANALYSES	414607	F1L	CARLOERBA	15	35	53	60	58	89	PRODUITS CHIMIQUES ET DE LABO
(FLACON DE 1 L)	415661	F1L	CARLOERBA	9	11	5	9	10	6	PRODUITS CHIMIQUES ET DE LABO
R POUR ANALYSES	21.188.294	F1L	PROLABO	128	70	54	86	113	124	PRODUITS CHIMIQUES ET DE LABO
2 POUR ANALYSES	21.188.363	BIA	PROLABO	403	520	575	664	700	796	PRODUITS CHIMIQUES ET DE LABO
UR (FLACON DE 1 L)	21.390.293	F1L	PROLABO	0	0	0	1	0	0	PRODUITS CHIMIQUES ET DE LABO
YSES (AMMONIUM HYDRO NDE 100 GRS)	21.255.183	FAG	PROLABO	3	9	2	24	0	12	PRODUITS CHIMIQUES ET DE LABO
S D'EAU PURIFIE (BORAX)	27.721.366	BI9	PROLABO	0	0	0	19	2	0	PRODUITS CHIMIQUES ET DE LABO
(FLACON DE 250 GRS)	470735	FBG	CARLOERBA	1	0	12	0	12	14	PRODUITS CHIMIQUES ET DE LABO
ACON DE 1 L)	818604.1000	F1L	MERCK	10	18	14	16	21	11	PRODUITS CHIMIQUES ET DE LABO
JR PRECIPITE A FAIBLE S (FLACON DE 250 GRS)	2066.0250	FBG	MERCK	0	2	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO

	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
APUR POUR ANALYSES	26.726.297	F1K	PROLABO	0	0	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
RE POUR ANALYSES	479307	F1K	CARLOERBA	0	3	1	1	0	3	PRODUITS CHIMIQUES ET DE LABO
Ř.P POUR ANALYSES R)	24.708.235	FBG	PROLABO	1	2	4	12	6	6	PRODUITS CHIMIQUES ET DE LABO
11" REFRIGERANT (FUT DE		FU8	DEHONSERVICE	0	0	6	7	5	5	PRODUITS CHIMIQUES ET DE LABO
(FLACON DE 1 LITRE)	22.711.290	F1L	PROLABO	4	2	16	1	6	9	PRODUITS CHIMIQUES ET DE LABO
DRATE TRES PUR	416947	F1K	CARLOERBA	4	0	12	24	24	40	PRODUITS CHIMIQUES ET DE LABO
PUR POUR ANALYSES	21.236.291	F1K	PROLABO	0	0	0	8	0	0	PRODUITS CHIMIQUES ET DE LABO
FLACON DE 500 GRS)	425026	F5G	CARLOERBA	1	7	11	5	3	2	PRODUITS CHIMIQUES ET DE LABO
E POUR ANALYSES	22.521.293	F1L	PROLABO	20	15	25	23	0	15	PRODUITS CHIMIQUES ET DE LABO
RMAPUR POUR ANALYSES R)	23.087.232	FBG	PROLABO	0	2	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
THANE) POUR ANALYSES	23.366.293	F1K	PROLABO	0	0	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
APUR POUR ANALYSES	471177	PCE	CARLOERBA	3	0	0	3	7	8	PRODUITS CHIMIQUES ET DE LABO
ISE POUR ANALYSES	479687	F1K	CARLOERBA	6	36	12	7	10	30	PRODUITS CHIMIQUES ET DE LABO
N 15% POUR ANALYSES	28.660.236	F25	PROLABO	9	9	10	14	18	16	PRODUITS CHIMIQUES ET DE LABO
) (SAC DE 25KG)		SBK	SOBREP	20	12	20	20	36	36	PRODUITS CHIMIQUES ET DE LABO
5KG)	(TCS)	PT5	MAINCO	11	15	15	31	27	42	TRAITEMENT DE SURFACE
NCENTRE) "RBS 25" (G)	RBS25 (TCS)	T20	MAINCO	126	118	155	193	189	210	TRAITEMENT DE SURFACE
LACON DE 1 L)	23.223.290	F1L	PROLABO	0	0	0	0	1	10	PRODUITS CHIMIQUES ET DE LABO
R (FLACON DE 1 L)	23.341.297	F1L	PROLABO	0	0	0	0	0	2	PRODUITS CHIMIQUES ET DE LABO
SYNTHESE (CI5 HI2 O2)	820538.0025	F2G	MERCK	0	0	0	0	0	108	PRODUITS CHIMIQUES ET DE LABO
S A 35% BOMBONNE TYPE E 34 KG)		BIF	BRENNTAGNORMANDIE	93	78	86	77	87	88	PRODUITS CHIMIQUES ET DE LABO
(YDE A 110 VOLUMES FLACON DE 1 L)	412072	F1L	CARLOERBA	269	148	119	150	137	238	PRODUITS CHIMIQUES ET DE LABO
YSES (FLACON DE 1 KG)	27.860.297	F1K	PROLABO	0	0	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
D.1,28 POUR ANALYSES	24.388.295	F1L	PROLABO	19	14	22	19	35	36	PRODUITS CHIMIQUES ET DE LABO
(SES (FLACON DE 1 L)	446907	F1L	CARLOERBA	2	0	6	0	0	10	PRODUITS CHIMIQUES ET DE LABO
A 98% (FLACON DE 1 L)	804608.1000	F1L	MERCK	10	6	12	11	11	12	PRODUITS CHIMIQUES ET DE LABO
ODIUM) (FLACON DE 1 KG)	370011	F1K	CARLOERBA	0	10	11	15	5	25	PRODUITS CHIMIQUES ET DE LABO
.UTION AQUEUSE 1N -)N 1 LITRE')	480717	F1L	CARLOERBA	63	57	74	48	86	80	PRODUITS CHIMIQUES ET DE LABO

	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
ON AQUEUSE A 3,5% DE ACON DE 1 L)	27.896.291	F1L	PROLABO	0	0	0	3	30	0	PRODUITS CHIMIQUES ET DE LABO
R POUR ANALYSES	26.846.235	FBG	PROLABO	42	18	37	13	13	4	PRODUITS CHIMIQUES ET DE LABO
(FLACON DE 250ML)	821160.0250	F25	MERCK	32	36	36	61	78	80	PRODUITS CHIMIQUES ET DE LABO
IIUM) POUR ANALYSES DE 1 KG)	5691.1000	F1K	MERCK	0	0	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
FLACON DE 50GRS)	23 438 155	F0G	PROLABO	0	78	106	237	453	448	PRODUITS CHIMIQUES ET DE LABO
R (FLACON DE 1 L)	461945	F1L	CARLOERBA	73	69	63	79	55	25	PRODUITS CHIMIQUES ET DE LABO
P NORMAPUR POUR 0 GRS)	21.276.185	FAG	PROLABO	36	48	48	72	54	30	PRODUITS CHIMIQUES ET DE LABO
OUR ÁNALYSES	25.776.180	FAG	PROLABO	2	0	0	0	0	6	PRODUITS CHIMIQUES ET DE LABO
UR ANALYSES (FLACON	312007	F1K	CARLOERBA	66	41	35	55	46	89	PRODUITS CHIMIQUES ET DE LABO
ANALYSES (FLACON DE	423954	FAG	CARLOERBA	1	50	0	23	16	83	PRODUITS CHIMIQUES ET DE LABO
FALLISE (FLACON DE 1 L)	2752.1000	F1L	MERCK	0	0	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
PUR (FLACON DE 1 KG)	5940.1000	F1K	MERCK	36	43	38	32	26	24	PRODUITS CHIMIQUES ET DE LABO
S (FLACON DE 250 GRS)	A48.740.008	FBG	FISHERSCIENTIFIC	1	0	2	12	0	0	PRODUITS CHIMIQUES ET DE LABO
ALLISE POUR ANALYSES	481757	F1K	CARLOERBA	0	0	0	2	3	12	PRODUITS CHIMIQUES ET DE LABO
ALLISE - POUR ANALYSE	481827	F1K	CARLOERBA	144	292	261	289	308	491	PRODUITS CHIMIQUES ET DE LABO
JE (FLACON DE 1 GR)	8677.0001	F1G	MERCK	0	0	0	0	0	2	PRODUITS CHIMIQUES ET DE LABO
S (FLACON DE 250 GRS)	420475	FBG	CARLOERBA	42	36	34	36	49	49	PRODUITS CHIMIQUES ET DE LABO
) (FLACON DE 1 KG)	26.888.296	F1K	PROLABO	0	0	0	0	6	0	PRODUITS CHIMIQUES ET DE LABO
POUR ANALYSES	482067	F1K	CARLOERBA	118	90	60	78	102	167	PRODUITS CHIMIQUES ET DE LABO
ECTION DES CIRCUITS 5 L)	PER (TECHNOUTIL)	F5L	MAINCO	1	0	2	7	0	9	PRODUITS CHIMIQUES ET DE LABO
CUBITENER DE 5 L)	(AUTOELEC DISTRIBUTION)	FEL	MAINCO	0	0	0	0	1	0	PRODUITS CHIMIQUES ET DE LABO
APUR POUR ANALYSES	473387	F1K	CARLOERBA	8	2	4	3	7	7	PRODUITS CHIMIQUES ET DE LABO
JR PEROXODISULFATE DE 1 KG)	5091.1000	F1K	MERCK	2	0	0	4	0	0	PRODUITS CHIMIQUES ET DE LABO
DE 250 GRS)	26.237.231	FBG	PROLAB0	0	1	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
JE (DI-SODIUM TE POUR ANALYSES ISO	480137	F1K	CARLOERBA	0	0	80	5	0	44	PRODUITS CHIMIQUES ET DE LABO
DECAHYDRATE POUR E 1 KG)	480277	F1K	CARLOERBA	24	27	36	38	71	227	PRODUITS CHIMIQUES ET DE LABO

	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
RMAPUR POUR ANALYSE)	26.948.237	FBG	PROLABO	4	2	0	2	0	0	PRODUITS CHIMIQUES ET DE LABO
OTASSE CAUSTIQUE) CADNIUM NICKEL SAFT LITRES)	N° 17	BI8	SAFT	5	1	0	0	0	1	PRODUITS CHIMIQUES ET DE LABO
PASTILLES (POTASSE CON DE 1 KG)	26.668.296	F1K	PROLABO	5	31	6	9	2	14	PRODUITS CHIMIQUES ET DE LABO
I DE 1 L)	27.199.292	F1L	PROLABO	0	0	0	0	0	126	PRODUITS CHIMIQUES ET DE LABO
N DE 100 GRS)	34.142.181	FAG	PROLABO	1	0	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
UR (FLACON DE 250 GR)	28.120.231	FBG	PROLABO	0	0	1	0	6	0	PRODUITS CHIMIQUES ET DE LABO
OIUM) TECHNIQUE EN	28.232.363	BI9	PROLABO	3	1	10	4	9	17	PRODUITS CHIMIQUES ET DE LABO
JM HYDROXYDE) POUR KG)	28.244.295	F1K	PROLABO	67	92	68	80	100	120	PRODUITS CHIMIQUES ET DE LABO
IEUSE A 30% (SODIUM S (FLACON DE 1 LITRE)	28.226.293	F1L	PROLABO	378	438	458	264	270	264	PRODUITS CHIMIQUES ET DE LABO
PUR (POTASSIUM ACON DE 1 KG)	4885.0500	F1K	MERCK	8	0	0	0	6	0	PRODUITS CHIMIQUES ET DE LABO
'EAU NORMAPUR POUR) GRS)	25.301.236	FBG	PROLABO	0	0	3	0	4	2	PRODUITS CHIMIQUES ET DE LABO
ACON DE 1 KG)	28.111.296	F1K	PROLABO	2	0	0	3	1	6	PRODUITS CHIMIQUES ET DE LABO
N DE 250 GRS)	8503.0250	FBG	MERCK	0	0	0	0	0	42	PRODUITS CHIMIQUES ET DE LABO
R POUR ANALYSE	362627	F1K	CARLOERBA	0	0	0	0	0	12	PRODUITS CHIMIQUES ET DE LABO
CON DE 1 KG)	483257	F1K	CARLOERBA	0	50	111	233	200	256	PRODUITS CHIMIQUES ET DE LABO
AQUEUSE A 20% R.P ON DE 1 LITRE)	21.354.298	F1L	PROLABO	0	0	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
P POUR ANALYSE	27.058.238	FBG	PROLABO	4	0	2	0	0	0	PRODUITS CHIMIQUES ET DE LABO
N POUR ANALYSE	8201.0100	FAG	MERCK	30	37	36	70	58	61	PRODUITS CHIMIQUES ET DE LABO
RITHIOSALICYLATE)	BD30416	F2G	MERCK	29	24	32	36	36	45	PRODUITS CHIMIQUES ET DE LABO
POUR ANALYSE	27.910.291	F1K	PROLABO	0	0	0	0	1	2	PRODUITS CHIMIQUES ET DE LABO
DE 1 LITRE)	28.675.294	F1L	PROLABO	0	7	3	7	1	2	PRODUITS CHIMIQUES ET DE LABO
N DE 250 GRS)	28.877.235	FBG	PROLABO	0	0	0	0	2	0	PRODUITS CHIMIQUES ET DE LABO
(FLACON DE 100 GRS)	21.369.186	FAG	PROLABO	0	0	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
S (FLACON DE 1 L)	28.975.291	F1L	PROLABO	50	62	60	96	101	105	PRODUITS CHIMIQUES ET DE LABO
GRAMME)		KG	GRANDEPAROISSE	63494 80	66594 80	67663 10	78521 00	63218 10	67214 66	PRODUITS CHIMIQUES ET DE LABO

	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
KILOGRAMME)		KG	BRENNTAGNORMANDI E	12675	16462	9998	27009	51528	13966 7	PRODUITS CHIMIQUES ET DE LABO
ON DE 10 LITRES)	528152	BI0	CARLOERBA	21	25	26	45	36	34	PRODUITS CHIMIQUES ET DE LABO
LOGRAMME)		KG	ELFATOCHEM	33573 30	39986 10	37459 80	40531 00	33478 88	30532 10	PRODUITS CHIMIQUES ET DE LABO
DE 200L)		FU3	SCC	162	181	179	293	118	403	PRODUITS CHIMIQUES ET DE LABO
DRE (SAC DE 40 KG)		SCK	SOLVAY	2016	2376	2544	2640	2529	2835	PRODUITS CHIMIQUES ET DE LABO
NE PUR) (FUT 150 KG)		FT0	MILLIPORE	5	51	74	265	244	623	PRODUITS CHIMIQUES ET DE LABO
RAN) (SAC DE 40 KG)		SCK	HOCHET	1	0	0	0	61	2	PRODUITS CHIMIQUES ET DE LABO
(FUT DE 210 L)		FT4	CODICA	5	12	23	16	18	41	PRODUITS CHIMIQUES ET DE LABO
(LITRE)		L	ELFATOCHEM	0	0	5	156	0	0	PRODUITS CHIMIQUES ET DE LABO
E SODIUM) KILOGRAMME		KG	SOLVAY	81352 75	88622 33	85847 07	95940 96	71195 07	73242 07	PRODUITS CHIMIQUES ET DE LABO
N (KILOGRAMME)		KG	AMPERE	22800	75360	58240	81048	64420	17900	PRODUITS CHIMIQUES ET DE LABO
9% (SAC DE 50 KG)		SDK	QUADRIMEX	8	119	160	146	480	1021	PRODUITS CHIMIQUES ET DE LABO
DE FER (FUT DE 220 KG)		FUN	AMPERE	0	0	14	95	71	0	PRODUITS CHIMIQUES ET DE LABO
T DE 218 KG)		FUM	SPCI	1252	1232	1239	1241	1202	1097	PRODUITS CHIMIQUES ET DE LABO
CHLORIDE (FLACON DE	140.1441 (ORIMBIO)	FEG	MAINCO	12	6	16	14	14	21	PRODUITS CHIMIQUES ET DE LABO
ACON DE 500 GR)	44315(FLUKA)	FEG	MAINCO	25	20	22	24	39	24	PRODUITS CHIMIQUES ET DE LABO
(KILOGRAMME)		KG	AMPERE	5895	12456	5460	11928	36692	53102	PRODUITS CHIMIQUES ET DE LABO
E 50 KG)		SDK	AMPERE	0	0	16	24	41	40	PRODUITS CHIMIQUES ET DE LABO
(SAC DE 50 KG)		SDK	RHODIA	21	42	7	0	96	288	PRODUITS CHIMIQUES ET DE LABO
83" (SAC DE 25 KG)	(BETZDEARBORN)	SBK	MAINCO	0	5	1	2	0	5	PRODUITS CHIMIQUES ET DE LABO
M - POUR SECHEUR DU 7 - (SACHET DE 4 KG)	0209732	S4K	LECOUFLE	0	0	0	0	1	0	PRODUITS CHIMIQUES ET DE LABO
V TYPE 512 EN FUT DE R DAC 120	5040200001 (STE DES ÉCHANGEURS)	PCE	MAINCO	0	5	0	0	5	0	PRODUITS CHIMIQUES ET DE LABO
N DE VENTILATION	0411809	PCE	LECOUFLE	0	1	0	0	0	0	COLLES
COMPOSE DE: 1 TUBE FANCHE 572 - 1 FLACON 747 - (LOCTITE) - AVEC RTICLE (LA TROUSSE)	0221090	PCE	LECOUFLE	0	1	0	0	0	2	COLLES
ODUIT D'ETANCHEITÉ COLLAGE DU MYLAR DATE DE PÉREMPTION 100 GRAMMES)	0221058	TU1	LECOUFLE	38	79	63	14	4	0	COLLES

	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
RCUIT IMPRIME CONTRE TOUTE SOUDURE SANS 200ML (LA BOMBE)	SK10 (LOTLACK)	PCE	MAINCO	2	0	0	3	15	3	REPRISE
TECTION DES DEFAUTS 450GR)	MS242 (MILLER STEPHENSON)	BM6	MAINCO	0	20	3	10	3	12	PRODUITS CHIMIQUES ET DE LABO
PE II-A/NSN 6850-00-105-	MS180 (MILLER STEPHENSON)	PCE	MAINCO	21	27	13	20	9	2	TRAITEMENT DE SURFACE
DISTRIBUTEUR MANUEL NTRETIEN DE CIRCUITS ONIQUES - TOTALEMENT RIAUX - (BIDON DE 10 L)	SRB11 PISTOLET PB1 (TECHNOUTIL)	BI0	MAINCO	70	60	52	70	56	59	TRAITEMENT DE SURFACE
22" - REFRIGERANT - G)	0412104	BTA	LECOUFLE	2	1	3	2	1	4	PRODUITS CHIMIQUES ET DE LABO
12" - REFRIGERANT -	0412198	ВТВ	LECOUFLE	0	0	0	0	12	0	PRODUITS CHIMIQUES ET DE LABO
1N - (FLACON 1 LITRE)	30.024.290	F1L	PROLABO	6	23	24	5	30	1	PRODUITS CHIMIQUES ET DE LABO
19L - PRET A L'EMPLOI - L "SAFT" TYPE SHP -	203052	BIA	SAFT	0	2	0	3	3	0	PRODUITS CHIMIQUES ET DE LABO
TEME DE CONTROLE ES TYPE PORTACOUNT S)	80.16 (TELEFLEX)	L16	MAINCO	1	0	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
R BOITE A GANTS 5004-925		PCE	ACC LAJONCHERE	0	0	0	0	0	0	PE MAPU T4
S (FUT DE 40KG)	408024	FUA	CARLOERBA	15	17	16	21	18	26	PRODUITS CHIMIQUES ET DE LABO
S (DIETHYLE OXYDE E 1L)	23.811.292	F1L	PROLABO	2	4	4	6	4	17	PRODUITS CHIMIQUES ET DE LABO
RAMME)		KG	BRENNTAG NORMANDIE	96384 0	11190 80	10486 60	87394 0	91152 0	93008 0	PRODUITS CHIMIQUES ET DE LABO
SECHEUR D'AIR A 100 -	201057 (THOMECREPELLE)	PCE	MAINCO	0	1	0	4	0	0	PRODUITS CHIMIQUES ET DE LABO
ACON DE 50 GRAMMES)	489833	F0G	CARLOERBA	0	0	20	0	0	0	PRODUITS CHIMIQUES ET DE LABO
9,07 G/MOL- POINT DE DUR ANALYSE (FLACON	6352.0500	F5G	MERCK	0	0	0	12	18	18	PRODUITS CHIMIQUES ET DE LABO
ACS) (FLACON DE 1 KG)	1217.1000	F1K	MERCK	0	0	6	42	78	67	PRODUITS CHIMIQUES ET DE LABO
R - POUR ANALYSES - XIMATIVEMENT ONIUM NH4 CO2 NH2 ET IH4 HC O3 - (FLACON DE	21.217.295	F1K	PROLABO	0	0	0	9	0	2	PRODUITS CHIMIQUES ET DE LABO
M RECTAPUR - IPITABLE PAR NH4 OH O GRAMMES)	22.594.237	FBG	PROLABO	2	6	6	0	6	0	PRODUITS CHIMIQUES ET DE LABO
33KG)	SIROLINE 660	FU1	SUCRERIES RAFFINERIES	768	1232	1200	1056	1040	640	PRODUITS CHIMIQUES ET DE LABO

	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
POTASSE CAUSTIQUE) SAFT KPMP ET KPHP	20.30.55	BIA	SAFT	0	3	0	1	0	2	PRODUITS CHIMIQUES ET DE LABO
80% (FUT DE 200KG)		FU2	ELFATOCHEM	0	118	190	199	201	199	PRODUITS CHIMIQUES ET DE LABO
IUM LIQUIDE – POUR E" SUR CHARIOT DE IN DE 10 LITRES)	(HOPPECKE)	BI0	GMT	0	0	0	3	0	0	PRODUITS CHIMIQUES ET DE LABO
IMITE DE TEMPERATURE OT DE 100 GRAMMES	0220043	PAG	LECOUFLE	33	49	15	26	25	19	COLLES
NCYL - UTILISABLE SUR OULEUR BEIGE - ON SUR TOUS LIQUIDES APANT - INODORE ES)	.(TENSILOR)	Т30	MAINCO	17	13	21	23	14	54	TRAITEMENT DE SURFACE
: - 6 MOLECULES D'EAU - DE 1 KG)	459337	PCE	CARLOERBA	0	0	0	0	2	1	PRODUITS CHIMIQUES ET DE LABO
HEOFLUID NORM) –	POZZOLITH 400N	FT4	MBT FRANCE	0	0	0	0	46	40	PRODUITS CHIMIQUES ET DE LABO
POUR DUPLICATEUR DE E 4 FLACONS 0,75 L)	24822203	BIW	BELL HOWELL	0	1	0	0	14	7	PRODUITS CHIMIQUES ET DE LABO
(FUT DE 225 L)		FU5	RHODIA	18	1	2	2	4	8	PRODUITS CHIMIQUES ET DE LABO
DOSEUSE REP. 3220-4)		PCE	ECA	1	0	0	0	0	0	PE MAPU T4
ROUES DOSEUSES 120-10B		PCE	ECA	0	0	0	0	0	1	PE MAPU T4
ROUES DOSEUSES 333		PCE	ECA	0	0	0	0	0	0	PE MAPU T4
ONES 30% - VISCOSITE A - 4 DEGRE C – PH : 6	0221066	FU0	LECOUFLE	0	1	0	0	0	2	TRAITEMENT DE SURFACE
GE A IODE ZEOLITHE UEMENT PUR ABSORBE E) – SORBANT AG SOUS AG) (FUT DE 18 KG)	AC6120/12	FT5	SFBD	0	0	2	10	0	8	REPRISE
LACON DE 5000R)	44310 (FLUKA)	F5G	MAINCO	2	4	2	8	10	8	PRODUITS CHIMIQUES ET DE LABO
ENERE - (FUT DE 200 L)	TPH REGENERE	FU3	ECA	48	192	232	168	72	298	PRODUITS CHIMIQUES ET DE LABO
NERE - (FUT DE 200L)	TBP 70% REGENERE	FU3	ECA	0	0	0	0	0	0	PRODUITS CHIMIQUES ET DE LABO
NERE - (FUT DE 200L)	TBP 80% REGENERE	FU3	ECA	0	60	16	44	0	84	PRODUITS CHIMIQUES ET DE LABO
DE 213 LITRES)	NEUTRAGEL SANIT	FT3	CODICA	35	35	18	21	25	25	PRODUITS CHIMIQUES ET DE LABO
6 (BOITE DE 1 KG)	451877	B1K	CARLOERBA	0	1	1	1	1	26	PRODUITS CHIMIQUES ET DE LABO
.5 LITRES)	412412	FAL	CARLOERBA	0	0	12	152	400	192	PRODUITS CHIMIQUES ET DE LABO

	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
(SAC DE 25 KG)		SBK	BRENNTAGNORMANDI E	283	38	1280	3040	2120	831	PRODUITS CHIMIQUES ET LABO
TION DENSITE 1,6		FT2	RHODIA	5	4	6	2	2	0	PRODUITS CHIMIQUES ET LABO
E 40% DANS L'EAU	MC 307655.1000	F1L	MERCK	15	16	14	7	11	0	PRODUITS CHIMIQUES ET LABO
A – ACETIQUE –	20.301.290	F1K	PROLABO	0	0	0	4	0	0	PRODUITS CHIMIQUES ET LABO
QUE) R.P EN SOLUTION I DE 1 LITRE)	24.207.291	BI1	PROLABO	0	1	0	1	0	0	PRODUITS CHIMIQUES ET LABO
Л – (SAC DE 25 KG)		SBK	QUADRIMEX	22	44	44	66	71	260	PRODUITS CHIMIQUES ET LABO
NE V2S		PCE	LEBLANC	0	0	0	3	0	0	PE MAPU T4
ACON DE 25 GR)	252816 (SIGMA)	F2G	MAINCO	54	87	52	41	0	0	PRODUITS CHIMIQUES ET LABO
ANALYSES (METHANOL) S)	6009.2500	FAL	MERCK	928	794	850	801	797	781	PRODUITS CHIMIQUES ET LABO
GR)	6161.0005	F5G	MERCK	0	0	0	0	0	0	PRODUITS CHIMIQUES ET LABO
PIRATOIRE "GOHIN BIDON DE 50 KG)	DX30L (TYPE) (GOHIN POULENC)	BIB	MAINCO	2	5	1	2	1	1	PRODUITS CHIMIQUES ET LABO
RANALYSES	20.422.322	F2L	PROLABO	698	742	844	984	1644	1684	PRODUITS CHIMIQUES ET LABO
500 GRS)	CS.010005.000	F5G	MATTHEY	13	13	9	19	14	25	PRODUITS CHIMIQUES ET LABO
EUR (0.25 LITRE) POUR DATE DE PEREMPTION (KIT)	0220027	LOT	LECOUFLE	14	13	31	14	6	16	COLLES
MANDE DE LA VITESSE 10.205		PCE	ACPP	0	0	0	0	0	0	PE MAPU T4
MOTOREDUCTEUR DE .205		PCE	ACPP	0	0	0	0	0	0	PE MAPU T4
UALITE N20 –		CA5	AIRLIQUIDE	14	8	14	2	0	0	PRODUITS CHIMIQUES ET LABO
4001 – 371 ET 7008 – 701		PCE	RAYNERI	0	0	0	0	1	0	PE MAPU T4
ALYSES (EMBALLAGE SORBANT)	455.1000	F1L	MERCK	8	2	1	5	8	39	PRODUITS CHIMIQUES ET LABO
8"(ATELIER R7) ES)	FN1C78	SBK	FERRO	0	0	0	0	0	0	PRODUITS CHIMIQUES ET LABO
DE DE 25% DANS LE DOML)		FEL	LECORDIER	0	6	0	12	33	18	PRODUITS CHIMIQUES ET LABO
OLUTION DE 35 %		FU2	ELFATOCHEM	489	412	222	202	182	150	PRODUITS CHIMIQUES ET LABO
C2.Z1"(ATELIER R7/ T7) ES)		SBK	CERDEC	8080	12160	11840	11360	9440	0	PRODUITS CHIMIQUES ET LABO
ITE DE 1 KG)		B1K	MATTHEY	181	269	285	25	220	6	PRODUITS CHIMIQUES ET LABO
QUALITE EXTRA PURE		SBK	AMPERE	505	870	730	400	529	20	PRODUITS CHIMIQUES ET LABO
E 12" REFRIGERANT - RECLYCLAGE 3)	0412201	BTF	LECOUFLE	0	0	0	6	0	0	PRODUITS CHIMIQUES ET LABO

	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
POUDRE R VETEMENT A BASE DE 5 KG)		SBK	SYNTHRON	440	480	440	520	480	40	PRODUITS CHIMIQUES ET LABO
ALLISE 12H ₂ 0		SBK	BRENNTAGNORMANDIE	35	71	55	81	55	0	PRODUITS CHIMIQUES ET LABO
2" COMPRENANT LA LLE DE 14,3 LITRES)	0412066	BTE	LECOUFLE	0	0	0	0	0	0	PRODUITS CHIMIQUES ET LABO
ORE (BIDON DE 60 L)	DECONTAMINOX FN (CHIMIDEROUIL)	T60	MAINCO	14	9	10	9	0	0	PRODUITS CHIMIQUES ET LABO
LUTION A 50% - POUR JE DIONEX TENEUR EN I %(*)	7067 (BAKER/FRANCE)	PCE	MAINCO	29	38	34	33	4	0	PRODUITS CHIMIQUES ET LABO
A IODE ZEOLITHE "JFM1" PUR ENROBE DE SEL RBANT AG SOUS FORME UT DE 10 KG)	JFM1	BAK	SFBD	16	30	0	35	0	0	TRAITEMENT DE SURFACE
TE DE 5 KG)	28 876 367	PCE	PROLABO	0	0	5	28	0	0	PRODUITS CHIMIQUES ET LABO
ES (FLACON DE 500 GR)	2382-0500	FEG	MERCK	0	2	12	5	0	0	PRODUITS CHIMIQUES ET LABO
E II R.P POUR ANALYSES	24.257.236	FBG	PROLABO	25	28	23	18	0	0	PRODUITS CHIMIQUES ET LABO
JTION B A 27,5% /DE) EN BIDON INOX ITRES)	525811	BI7	CARLOERBA	67	75	64	48	0	0	PRODUITS CHIMIQUES ET LABO
TION "A" A 22,5% /DE) EN BIDON INOX ITRES)	525810	BI7	CARLOERBA	73	73	93	52	0	0	PRODUITS CHIMIQUES ET LABO
10 LITRES)	LLL/D1	BI0	LANCER	10	11	23	12	0	0	TRAITEMENT DE SURFACE
GENT LLL)	NLL/D1	BI0	LANCER	39	37	37	18	0	0	TRAITEMENT DE SURFACE
UR D'AIR MAPU	(CHAUMECA – GOHIN)	FUB	MAINCO	5	21	13	20	0	0	PRODUITS CHIMIQUES ET LABO
JTION B A 27,5% E) EN FLACON SECURITE 2,5 L)	31131423	F2L	PROLABO	0	0	0	40	0	0	PRODUITS CHIMIQUES ET LABO
TION "A" A 22,5% E) EN FLACON SECURITE 2,5 L)	31130420	F2L	PROLABO	0	0	0	40	0	0	PRODUITS CHIMIQUES ET LABO
SSIUM LIQUIDE POUR " SUR CHARIOT DE N DE 52,8 LITRES)	(HOPPECKE)	PCE	GMT	0	0	0	0	0	0	PRODUITS CHIMIQUES ET LABO
SECHEUR D'AIR A 100 -	201155 (THOMECREPELLE)	PCE	MAINCO	0	0	0	0	0	0	PRODUITS CHIMIQUES ET LABO
200L) POUR "MDS8"	,	FU3	RECHEM	3	1	2	1	0	0	PRODUITS CHIMIQUES ET LABO
DE FABRICATION DE DE 6 LITRES)		TBL	PROCATALYSE	2	2	0	0	0	0	PRODUITS CHIMIQUES ET LABO
MME)		KG	MMCC	0	12000	3000	0	0	0	PRODUITS CHIMIQUES ET LABO
0 (FUT DE 250 KG)		FU6	AMPERE	4	8	0	0	0	0	PRODUITS CHIMIQUES ET LABO

	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
BIDONS DE 1 LITRE)	ADDITIF 5191 (4X1L)	BIV	IMAJE	573	569	417	0	0	0	TRAITEMENT DE SURFACE
OUR ANALYSES (FLACON	524905	F3K	CARLOERBA	30	31	42	0	0	0	PRODUITS CHIMIQUES ET LABO
ACON PURASAFE 1 LITRE)	30.709 (RIEDEL DE HANN)	F1L	LABOSTANDADISTRIL AB	452	354	198	0	0	0	PRODUITS CHIMIQUES ET LABO
EE EXCLUSIVEMENT AU 134A	016070000	BIC	YORK	6	5	0	0	0	0	PRODUITS CHIMIQUES ET LABO
TELIER MDSB (BIDON DE	POZZOLITH 400N	BI0	MBTFRANCE	22	16	0	0	0	0	PRODUITS CHIMIQUES ET LABO
9% (SAC DE 25 KG)		SBK	QUADRIMEX	304	0	0	0	0	0	PRODUITS CHIMIQUES ET LABO
NE – COULEUR ROUGE – P –60 A +150 DEG.C –	317 (ORAPI)	FML	PORQUET	27	6	0	0	0	0	COLLES
ORAPHOS 50" (BIDON DE	2 PHOS 5030 (ORAPI)	BID	PORQUET	11	5	0	0	0	0	TRAITEMENT DE SURFACE
ATELIER R7/T7)		SBK	FERRO	0	0	0	0	0	0	PRODUITS CHIMIQUES ET LABO
C2.Z1" (ATELIERS R7/T7)		TNE	FERRO	4	4	0	0	0	0	PRODUITS CHIMIQUES ET LABO
ET ANTI – HUMIDITE – 「– (BOMBE DE 405 ML)	REDUCE 4	BM2	PORQUET	526	120	0	0	0	0	TRAITEMENT DE SURFACE
ET ANTI – HUMIDITE – Г – (BIDON DE 1 LITRE)	REDUCE 4	BI1	PORQUET	114	26	0	0	0	0	TRAITEMENT DE SURFACE
T ANTI – HUMIDITE – Г – (BOMBE DE 800 ML)	REDUCE 4	BM8	PORQUET	125	0	0	0	0	0	TRAITEMENT DE SURFACE
RESINE EPOXY CHARGE BOUCHAGE – PREDOSE 10MN – DE -40 A +200 OCKET DE 125 G)	OAMETAL "A" POCKET	PAB	PORQUET	90	2	0	0	0	0	COLLES
RESINE EPOXY CHARGE REBOUCHAGE – DUREE EMPERATURE DE -40 A GR)	ORAMETAL "A"	B6G	PORQUET	48	0	0	0	0	0	COLLES
BR/L POUR ANALYSES	524725	BI2	CARLOERBA	107	0	0	0	0	0	PRODUITS CHIMIQUES ET LABO
SE "OXAQUIM" POUR (G)		SBK	AMPERE	381	0	0	0	0	0	PRODUITS CHIMIQUES ET LABO
EGRILUB"		BI1	PORQUET	12						
0		SBK		51						
RECTAPUR		FEG	MERCK SA	0						
CONTROLE N.C		UNI	LEGGLIELE	0						
ETAUX		BIE FUN	LECOUFLE	1		-		-		
OSPHATE SH BETON)		BIA	MAINCO	0						
DITULTUN)		BM4	IVIAINCO	0						
		CO		0						
UT DE 50 KG)		FUT	TOTAL RAFFINAGE DIST	0						
JT DE 200KG)		FUT	BAYER	48						

	Référence	Unité	Fournisseur	99	98	97	96	95	94	Secteur
/IBES 650 ML)		BM4	PORQUET	81						
TON A -22,5%		FLA	CARLO ERBA REACTIFS	0						
TON B -27,5%		FLA	CARLO ERBA REACTIFS	0						
6 RPE		F1L	CARLO ERBA REACTIFS	30						
EN FLACON		F1L		0						
- FUT DE 200KG		FUT	RHODIA CHIMIE	0						
RESINE (500GR)		KIT	PORQUET	0						
RPE		F2L	CARLO ERBA REACTIFS	40						
UC 1879		PCE	PORQUET	0						
D.68 CST 23 KG		BI	ELF ANTAR FRANCE	0						
LACON DE 2 L)		FLA	CARLO ERBA REACTIFS	42						
BIDON DE 5 L)		BIA		6						
GEL)(FUT 210 L)		FUT	CODIVA VI	0						
EGRILUB"		BM4	PORQUET	0						
SE POUR UN LITRE)	(PROMER)	F2C	LITTEE	576	362	490	706	1028	867	PRODUITS CHIMIQUES ET LABO
(JAVEL)		F2C	LITTEE	576						
T DE 1,4 KG)		P1K	LITTEE	0	3	12	0	5	14	PRODUITS CHIMIQUES ET LABO
		P1K	LITTEE	0						
VRE LAITON BRONZE –	0229539	BIC		3	1	0	0	3	0	TRAITEMENT DE SURFACE
OUS METAUX		BIC		3						
RCODINE 120		KG	CHEMETALL	2400						
ILOGRAMME)	PARCODINE 120	KG	CHEMETALL	2400	0	1928	0	3466	4554	TRAITEMENT DE SURFACE
EN SOLUTION		T60	LECOUFLE	252						
ON AQUEUSE A 3;5% DE ONBONNE DE 60 L)	1601475	T60	LECOUFLE	252	252	213	243	295	374	PRODUITS CHIMIQUES ET LABO
PE DERPHOS		PT5	MAINCO	2						
PHOS – CONTIENT DE T DE 5 KG)	11113 (CARAL)	PT5	MAINCO	2	3	0	2	0	0	TRAITEMENT DE SURFACE
(DURCISSEUR)	5380 BU (CELLIOSE)	BIA	MAINCO	0	0	0	0	0	0	TRAITEMENT DE SURFACE
(DURCISSEUR)		BIA	MAINCO	0						
		SCK	LECOUFLE	10						

Annexe N° 2

Bilans mensuels de la charge chimique des rejets radioactifs (A+V) de COGEMA La Hague

Années 2000 à 1987

Concentrations en milligramme par litre

ırs	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
60	9320	13208	11235	13558	5133	11726	14011	12160	12071
2E+01	8,70E+00	7,40E+00	8,00E+00	2,00E+01	1,60E+01	9,40E+00	9,70E+00	1,57E+01	9,60E+00
0E-01	2,00E-01	7,00E-01	< 1,00E-01	9,00E-01	1,10E-01	< 1,00E-01	6,00E-01	< 1,00E-01	3,20E-01
7E+02	3,38E+02	4,46E+02	7,05E+02	2,10E+02	2,06E+02	4,00E+02	5,65E+02	6,99E+02	3,39E+02
3E+04	2,45E+04	2,50E+04	2,49E+04	3,04E+04	1,23E+04	2,44E+04	2,51E+04	2,54E+04	3,13E+04
4E+03	1,56E+03	1,54E+03	1,55E+03	1,34E+03	1,34E+03	1,38E+03	1,36E+03	1,82E+03	1,68E+03
5E+02	2,00E+02	1,75E+02	1,25E+02	1,60E+02	2,50E+02	2,25E+02	1,95E+02	1,43E+02	1,80E+02
0E-01	< 1,00E-01								
5E+01	3,50E+00	< 5,00E+00	< 5,00E+00	5,00E+00	< 5,00E+00	6,20E+00	2,00E+01	2,08E+01	1,66E+01
5E+01	3,50E+01	5,26E+01	2,60E+00	5,68E+01	2,00E+00	3,00E+00	6,30E+01	1,60E+00	2,86E+01
DE+00	1,00E+00	6,00E+00	6,00E+00	8,00E+00	7,50E+00	1,30E+01	1,40E+01	9,00E+00	1,21E+01
DE+00	2,80E+00	1,30E+00	< 1,00E+00	1,67E+00	< 1,00E+00				
0E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	6,00E-02	< 5,00E-02	1,20E-01	1,60E-01	8,10E-02	8,40E-02
DE+00	1,90E+00	3,30E+00	1,80E+00	1,70E+00	4,00E+00	2,00E+00	3,50E+00	1,90E+00	2,40E+00
0E-02	< 5,00E-02								
0E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	8,00E-02	< 5,00E-02	9,00E-02	1,60E-01	< 5,00E-02	5,90E-02
0E-02	< 5,00E-02								
DE+00	< 1,00E+00								
0E-02	< 1,30E-02								
3E+01	2,36E+01	2,10E+01	1,40E+01	2,45E+01	9,50E+00	1,78E+01	2,70E+01	2,70E+01	2,24E+01
0E-01	4,00E-01	4,00E-01	4,00E-01	4,00E-01	9,00E-01	5,00E-01	7,00E-01	8,00E-01	6,50E-01
0E-02	< 5,00E-02								
5E+04	1,17E+04	1,20E+04	1,15E+04	1,41E+04	6,78E+03	1,18E+04	1,13E+04	1,32E+04	1,40E+04
0E-01	8,00E-01	1,20E+00	8,00E-01	7,00E-01	1,10E+00	7,00E-01	7,00E-01	5,50E-01	1,00E+00
0E-01	< 2,00E-01								
0E-02	< 5,00E-02								
DE+00	< 1,00E+00								
0E-02	< 5,00E-02	8,50E-02							

ırs	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
01	12661	12812	12776	12739	5752	13695	14802	13894	15009
				,	,	,			
DE+01	1,35E+01	2,20E+01	7,20E+00	1,00E+01	1,16E+01	4,50E+00	1,24E+01	7,00E+00	1,08E+01
0E-01	1,50E-01	< 1,00E-01	1,60E-01	1,60E-01	4,00E-01	1,40E-01	3,40E-01	4,20E-01	< 1,00E-01
5E+02	5,15E+02	4,45E+02	5,60E+02	3,50E+02	2,87E+02	4,30E+02	4,60E+02	4,15E+02	3,12E+02
1E+04	2,70E+04	2,45E+04	2,22E+04	2,96E+04	1,27E+04	1,54E+04	2,00E+04	2,19E+04	2,36E+04
2E+03	1,47E+03	1,48E+03	1,43E+03	1,58E+03	1,38E+03	1,15E+03	1,22E+03	1,09E+03	1,26E+03
5E+02	1,50E+02	1,50E+02	2,00E+02	1,60E+02	2,50E+02	2,00E+02	2,40E+02	2,15E+02	1,50E+02
0E-01	< 1,00E-01								
DE+00	1,90E+01	1,60E+01	1,40E+01	< 5,00E+00	6,50E+00	7,20E+00	1,00E+01	7,00E+00	7,20E+00
DE+01	3,20E+01	1,43E+01	1,30E+01	1,50E+01	4,00E+01	1,40E+01	3,25E+01	3,90E+01	5,70E+00
5E+01	4,50E+00	1,02E+01	7,80E+00	6,20E+00	1,38E+01	2,35E+01	2,43E+01	2,26E+01	9,90E+00
DE+00	2,50E+00	< 1,00E+00							
0E-01	5,00E-02	5,00E-02	2,50E-02	3,00E-02	9,00E-02	5,00E-02	3,50E-02	6,90E-02	6,00E-02
DE+00	2,80E+00	2,80E+00	2,20E+00	3,20E+00	8,00E-01	3,60E-01	3,20E+00	3,20E+00	2,00E+00
0E-01	< 2,00E-01								
DE+00	< 1,00E+00								
DE+00	< 1,00E+00								
DE+00	3,00E+00	< 1,00E+00							
DE+00	< 1,00E+00								
DE+01	1,60E-01	2,80E+01	2,00E+01	2,00E+01	1,10E+01	1,20E+01	2,70E+01	2,10E+01	1,25E+01
0E-01	7,50E-01	7,50E-01	7,30E-01	8,00E+00	1,40E+00	6,00E-01	9,00E-01	9,30E-01	5,00E-01
0E-00	< 1,00E-00								
DE+04	1,29E+04	1,14E+04	1,05E+04	1,30E+04	6,63E+03	7,45E+03	8,69E+03	9,76E+03	1,11E+04
5E+00	9,00E-01	7,80E-01	8,60E-01	1,00E+00	6,70E-01	6,70E-01	6,60E-01	5,00E-01	< 5,00E-01
DE+00	< 1,00E+00								
DE+00	< 1,00E+00								
DE+00	< 1,00E+00								
0E-00	< 1,00E-00								

ırs	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
65	13095	14214	12801	12511	6564	11978	13705	12487	13400
		,	,	,	,				
DE+01	1,00E+01	1,10E+01	3,00E+00	1,45E+01	1,80E+01	1,00E+01	1,00E+01	8,00E+00	1,35E+01
0E-01	2,40E-01	1,30E-01	1,00E-01	2,50E-01	2,00-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01
3E+02	4,80E+02	7,28E+02	7,10E+02	6,50E+02	2,60E+02	4,90E+02	5,67E+02	7,65E+02	6,90E+02
4E+04	2,06E+04	2,42E+04	2,00E+04	2,64E+04	1,30E+04	2,02E+04	1,65E+04	1,77E+04	2,41E+04
1E+03	1,19E+03	1,07E+03	8,56E+02	1,37E+03	2,57E+03	1,24E+03	1,15E+03	1,72E+03	1,27E+03
)E+02	2,50E+02	1,75E+02	1,50E+02	1,50E+02	4,00E+02	5,00E+01	1,50E+02	1,50E+02	1,75E+02
0E-01	<1,00E-01	<1,00E-01	<1,00E-01	<1,00E-01	<1,00E-01	<1,00E-01	<1,00E+00	<1,00E+00	<1,00E-01
DE+00	5,70E+00	2,25E+01	<5,00E+00	<5,00E+00	<5,00E+00	1,88E+01	1,00E+01	1,60E+01	<5,00E+00
DE+01	5,80E+01	5,40E+01	1,50E+01	4,50E+01	3,50E+01	2,35E+01	3,00E+00	3,00E+00	5,00E+00
DE+01	1,87E+01	1,80E+01	1,26E+01	2,00E+01	1,80E+01	2,05E+01	6,50E+00	7,50E+00	4,50E+00
DE+00	< 1,00E+00	6,40E+00	2,50E+00	1,10E+00	< 1,00E+00				
0E-02	3,00E-02	4,00E-02	7,00E-02	3,00E-02	7,00E-02	3,00E-02	4,00E-02	6,00E-02	1,00E-01
DE+00	2,50E+00	2,00E+00	2,50E+00	2,60E+00	2,70E+00	2,50E+00	3,50E+00	1,50E+00	2,60E+00
0E-01	< 2,00E-01								
DE+00	< 1,00E+00								
DE+00	< 1,00E+00								
DE+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	1,70E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00
DE+00	< 1,00E+00								
DE+01	2,30E+01	2,30E+01	2,30E+01	4,10E+01	8,20E+00	1,45E+01	1,25E+01	1,60E+01	2,00E+01
0E-01	4,00E-01	3,00E-01	4,00E-01	4,00E-01	8,00E-01	7,00E-01	7,00E-01	4,50E-01	3,00E-01
0E-00	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1 00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01
2E+04	9,89E+03	1,13E+04	9,08E+03	1,20E+04	8,19E+03	9,29E+03	8,22E+03	9,06E+03	1,15E+04
0E-01	1,70E+00	6,70E-01	1,24E+00	1,00E+00	1,50E+00	1,20E+00	3,00E+00	8,00E-01	1,30E+00
DE+00	< 1,00E+00								
DE+01	< 1,00E+01								
DE+00	< 1,00E+00								
0E-01	< 1,00E-01								

rs	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
85	14070	14526	14703	11657	6963	10766	13704	14658	13030
E+01	1,70E+01	5,00E+00	6,00E+00	8,00E+00	7,33E+02	3,65E+02	9,70E+01	1,34E+02	1,30E+01
0E-01	1,60E-01	2,00E-01	1,00E-01	1,00E-01	1,00E-01	< 1,00E-01	2,00E-01	3,90E-01	< 1,00E-01
E+02	5,90E+02	6,15E+02	6,35E+02	3,50E+02	3,10E+01	2,25E+02	4,41E+02	6,59E+02	4,25E+02
9E+04	2,22E+04	2,57E+04	2,21E+04	2,64E+04	1,73E+04	1,21E+04	4,84E+04	1,95E+04	2,26E+04
4E+03	1,78E+03	1,87E+03	1,36E+03	2,30E+03	1,34E+03	1,38E+03	1,20E+03	9,49E+02	1,35E+03
5E+02	3,00E+02	2,80E+02	3,50E+02	3,00E+02	3,30E+02	2,75E+02	4,90E+01	3,00E+02	1,75E+02
0E-01	< 1,00E-01	1,40E+00							
DE+00	1,27E+01	2,05E+01	1,50E+01	8,30E+00	6,20E+00	< 5,00E+00	7,00E+00	1,00E+01	< 1,00E+01
DE+01	8,00E+00	2,30E+01	1,60E+01	8,50E+00	3,10E+01	1,70E+01	2,15E+01	6,40E+01	< 3,50E+00
DE+01	4,20E+01	2,30E+01	2,60E+01	1,95E+01	4,30E+01	3,85E+01	2,13E+01	2,80E+01	2,60E+01
DE+00	2,50E+00	4,80E+00	< 1,00E+00	< 1,00E+00	1,80E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	2,20E+00
0E-01	< 3,00E-02	1,50E-01	9,00E-02	7,00E-02	6,00E-02	4,00E-02	1,30E-01	1,40E-01	3,80E-02
DE+01	1,00E+01	6,00E+00	5,00E+00	5,70E+00	2,30E+01	1,15E+01	5,50E+00	5,70E+00	3,20E+00
0E-01	< 2,00E-01								
DE+00	< 1,00E+00								
DE+00	< 1,00E+00								
DE+00	< 1,00E+00								
DE+00	< 1,00E+00								
DE+01	2,60E+01	5,00E+01	2,90E+01	2,66E+01	3,55E+01	1,90E+01	2,10E+01	2,68E+01	1,60E+01
DE+00	2,20E+00	6,00E-01	4,00E-01	5,00E-01	4,30E+01	2,50E+01	5,80E+00	7,80E+00	4,00E-01
0E-01	< 1,00E-01								
1E+04	1,08E+04	1,24E+04	1,03E+04	1,29E+04	8,42E+03	7,04E+03	8,78E+03	9,01E+03	1,06E+04
DE+00	1,00E+00	1,00E+00	1,00E+00	8,00E-01	1,20E+00	1,20E+00	9,00E-01	< 5,00E-01	1,00E+00
DE+00	< 1,00E+00								
DE+01	< 1,00E+01								
E+00	< 1,00E+00								
0E-01	< 1,00E-01								

rs	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
69	14294	15753	15053	12777	8777	13475	14803	13956	13848
NE . 04	4.005.04	4.005.00	4.005.04	4 705 . 00	0.005.04	0.405.04	0.005.04	L 0.405.04	0.005.00
)E+01	1,38E+01	1,90E+02	1,60E+01	1,70E+02	3,00E+01	2,10E+01	3,30E+01	3,40E+01	9,00E+00
0E-01	2,00E-01	< 1,00E-01	1,00E-01	< 1,00E-01	2,60E-01	< 1,00E-01	< 1,00E+01	2,00E-01	2,00E-01
3E+02	1,75E+02	4,60E+02	4,40E+02	3,50E+02	1,08E+02	5,00E+02	5,30E+02	5,45E+02	5,06E+02
3E+04	2,32E+04	2,22E+04	2,40E+04	2,41E+04	2,46E+04	2,01E+04	2,68E+04	2,41E+04	2,30E+04
5E+03	1,49E+03	1,28E+03	1,40E+03	2,09E+03	1,78E+03	1,84E+03	1,92E+03	2,18E+03	1,76E+03
E+01	3,25E+02	3,00E+02	3,50E+02	3,25E+02	4,00E+02	2,75E+02	2,75E+02	3,00E+02	2,75E+02
0E-01	< 1,00E-01								
DE+00	9,80E+00	5,00E+00	7,50E+00	7,42E+00	1,40E+01	8,00E+00	5,00E+00	6,00E+00	5,80E+00
DE+00	7,20E+01	4,55E+01	9,00E+01	1,20E+01	4,70E+01	4,30E+01	2,50E+01	7,70E+01	1,24E+02
DE+01	3,80E+01	9,60E+01	1,55E+01	4,50E+01	3,50E+01	3,20E+01	1,65E+01	1,10E+01	1,27E+01
DE+00	< 1,00E+00	1,50E+00	4,40E+00	3,00E-01	2,10E+00	< 1,00E+00	2,50E+00	4,70E+00	< 1,00E+00
0E-02	1,00E-01	3,00E-01	4,00E-01	3,00E-02	1,00E-01	1,00E-01	1,50E-01	6,00E-02	1,40E-01
DE+00	4,60E+00	1,00E+01	3,50E+01	9,00E+00	1,00E+01	4,50E+00	3,00E+00	7,40E+00	6,10E+00
0E-01	3,00E-01	4,00E-01	< 2,00E-01	< 2,00E-01	2,00E-01	< 2,00E-01	3,00E-01	< 2,00E-01	< 2,00E-01
DE+00	< 1,00E+00								
DE+00	< 1,00E+00	1,60E+00	< 1,00E+00						
DE+00	< 1,00E+00	< 1,00E+00	4,50E+00	< 1,00E+00	1,70E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00
E+00	< 1,00E+00								
3E+01	2,90E+01	2,30E+01	3,10E+01	3,30E+01	3,00E+01	4,80E+01	3,70E+01	5,10E+01	3,80E+01
E+00	5,00E-01	2,50E+00	4,00E-01	1,10E+01	1,40E+00	< 5,00E-02	< 5,00E-02	3,70E+00	6,00E-01
0E-01	< 1,00E-01	1,40E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01				
E+03	1,06E+04	1,00E+04	1,16E+04	1,13E+04	1,20E+04	1,02E+04	1,24E+04	1,19E+04	1,08E+04
E+00	1,30E+00	1,20E+00	2,70E+00	1,21E+00	3,30E+00	2,00E+00	6,00E-01	1,30E+00	1,40E+00
E+00	< 1,00E+00								
DE+01	< 1,00E+01								
E+00	< 1,00E+00								
0E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	2,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01

rs	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
47	13335	14576	12898	11612	9395	14143	14363	15086	14660
E+01	5,20E+01	1,80E+01	2,50E+01	1,10E+01	2,00E+01	1,86E+01	1,44E+01	2,65E+01	1,70E+02
0E-01	1,00E-01	4,00E-01	2,00E-01	2,00E-01	1,60E-01	1,00E-01	< 1,00E-01	1,80E-01	2,80E-01
E+02	7,51E+02	6,20E+02	3,85E+02	1,97E+02	1,20E+02	3,47E+02	4,60E+02	< 4,00E+00	3,40E+02
2E+04	9,97E+03	1,19E+04	1,88E+04	2,22E+04	1,51E+04	1,01E+04	1,68E+04	1,60E+04	2,00E+04
3E+02	1,02E+03	1,20E+03	1,28E+03	1,95E+03	1,27E+03	1,33E+03	1,37E+03	1,45E+03	1,32E+03
E+02	3,00E+02	4,35E+02	4,35E+02	3,75E+02	3,00E+02	3,80E+02	5,25E+02	4,50E+02	1,50E+02
0E-01	< 1,00E-01								
5E+01	3,00E+01	4,50E+01	2,80E+01	1,60E+01	1,40E+01	1,10E+01	1,76E+01	6,50E+00	< 5,00E+00
3E+02	2,23E+01	8,50E+01	1,15E+02	4,60E+01	9,00E+01	3,88E+01	2,84E+01	8,00E+01	4,90E+01
E+01	2,70E+01	2,50E+01	2,35E+01	4,00E+01	3,25E+01	4,80E+01	7,50E+01	7,20E+01	3,50E+01
E+00	< 1,00E+00	9,50E+00	< 1,00E+00	1,50E+00					
0E-02	2,00E-01	1,00E-01	6,00E-01	3,00E-01	2,00E-01	4,00E-02	2,00E-01	2,80E+00	6,70E-01
3E+01	6,80E+00	9,00E+00	1,05E+01	9,00E+00	8,40E+00	6,70E+00	7,40E+00	5,00E+00	7,80E+00
0E-01	3,00E-01	< 2,00E-01	< 2,00E-01	< 2,00E-01	2,50E-01	< 2,00E-01	< 2,00E-01	< 2,00E-01	< 2,00E-01
)E+00	< 1,00E+00								
E+00	< 1,00E+00								
E+00	< 1,00E+00	4,30E+00	1,10E+00	1,20E+00	8,90E-01	6,80E-01	4,00E-01	6,00E-01	< 1,00E+00
E+00	< 1,00E+00								
E+01	1,08E+01	3,50E+01	4,00E+01	2,20E+01	7,30E+01	1,40E+01	2,00E+01	2,40E+01	3,57E+01
E+00	2,00E+00	1,40E+00	8,00E-01	8,60E+00	1,60E+00	6,00E-01	1,10E+00	6,00E-01	1,39E+01
0E-01	< 1,00E-01								
6E+03	4,79E+03	6,83E+03	9,16E+03	1,09E+04	7,55E+03	5,26E+03	8,33E+03	8,14E+03	9,20E+03
E+00	9,00E-01	1,50E+00	1,50E+00	1,30E+00	1,47E+00	2,50E+00	2,20E+00	4,10E+00	2,20E+00
DE+00	< 1,00E+00								
DE+00	< 1,00E+00	< 1,00E+01	< 1,00E+00	< 1,00E+01					
DE+00	< 1,00E+00								
0E-01	< 1,00E-01								

ars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
72	13755	15528	14457	14890	11424	15413	16645	15612	13869
DE+01	2,30E+01	2,00E+01	2,65E+01	3,10E+01	3,00E+01	1,60E+01	1,80E+01	2,50E+01	2,20E+01
0E-01	1,00E-01	2,00E-01	1,50E-01	1,00E-01	1,30E-01	1,00E-01	< 1,00E-01	< 1,00E-01	1,00E-01
6E+02	1,65E+02	2,00E+02	2,80E+02	1,75E+02	1,03E+02	2,20E+02	2,82E+02	3,00E+02	3,60E+02
E+04	1,70E+04	1,95E+04	1,54E+04	2,60E+04	2,31E+04	1,24E+04	1,60E+04	1,27E+04	1,80E+04
DE+02	4,66E+02	4,70E+02	5,40E+02	5,20E+02	7,20E+02	6,85E+02	5,66E+02	6,20E+02	6,80E+02
DE+02	2,00E+02	5,00E+01	3,00E+02	2,85E+02	4,50E+02	2,50E+02	2,75E+02	2,30E+02	3,60E+02
DE+00	< 8,10E+00	< 1,00E-01							
DE+01	1,50E+01	3,50E+01	1,50E+01	1,20E+01	8,50E+00	8,50E+00	8,00E+00	2,50E+00	1,50E+01
5E+02	1,45E+02	2,20E+02	1,90E+02	3,40E+02	1,75E+02	1,80E+02	1,04E+02	1,20E+02	3,10E+02
DE+01	1,20E+01	3,20E+01	3,50E+01	1,30E+01	2,00E+01	1,10E+01	1,30E+01	2,20E+01	2,60E+01
DE+00	9,00E+00	< 1,00E+00	1,10E+00	1,10E+00	6,00E-01	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00
0E-01	2,00E-01	< 1,00E-01	1,00E+00	1,60E-01	2,20E-01	1,20E-01	< 1,00E-01	< 1,00E-01	1,30E-01
DE+01	1,00E+01	< 2,00E+00	9,20E+00	7,60E+00	1,00E+01	8,70E+00	1,90E+01	7,00E+00	7,30E+00
0E-01	< 2,00E-01	3,00E-01	< 2,00E-01						
DE+01	< 1,00E+01	< 1,00E+01	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	2,80E+00	< 1,00E+00	< 1,00E+00
0E-01	< 1,00E+00	< 1,00E+00	1,10E+00	< 1,00E+00					
DE+00	2,30E+00	< 2,00E+00	3,00E+00	5,00E-01	1,80E+00				
0E-01	< 1,00E-01	< 1,00E-01	< 1,00E+00						
9E+02	2,70E+01	6,00E+01	< 2,00E+01	4,40E+01	4,50E+01	2,00E+01	3,90E+01	< 2,00E+01	3,30E+01
DE+00	1,20E+00	1,00E+00	1,25E+00	1,10E+00	1,30E+00	1,10E+00	1,70E+00	1,20E+00	1,00E+00
0E-01	< 1,00E-01	2,00E-01	< 1,00E-01	1,00E-01					
9E+03	7,80E+03	8,40E+03	6,98E+03	1,10E+04	1,03E+04	6,32E+03	7,62E+03	6,57E+03	8,27E+03
DE+00	3,30E+00	5,00E+00	1,50E+00	5,00E+01	1,20E+00	3,40E+00	3,30E+00	9,00E-01	1,50E+00
DE+00	< 1,00E+00	< 1,00E+00	4,00E+00	< 1,00E+00	1,40E+00				
DE+01	< 1,00E+01								
DE+00	< 1,00E+00	1,40E+00							
0E-01	< 1,00E-01								

ırs	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
:05	10989	13295	12807	9568	7656	12721	12946	11559	15529
			ı	ı	ı	ı	1		ı
DE+01	4,20E+01	1,63E+01	2,20E+01	9,30E+00	4,30E+01	3,30E+01	2,80E+01	2,80E+01	2,00E+01
0E-01	1,00E-01	1,70E-01	< 1,00E-01	< 1,00E-01	4,50E-01	1,00E-01	1,40E-01	2,50E-01	< 1,00E-01
3E+02	1,29E+02	1,61E+02	1,82E+02	< 1,00E+00	2,00E+00	9,90E+01	1,11E+02	2,15E+02	1,90E+02
7E+04	1,20E+04	2,71E+04	1,70E+04	1,68E+04	2,09E+04	1,24E+04	1,30E+04	1,04E+04	2,10E+04
DE+02	7,00E+02	4,61E+02	3,88E+02	6,61E+02	4,25E+02	4,34E+02	5,53E+02	6,21E+02	3,40E+02
)E+02	8,00E+01	1,10E+02	1,75E+02	2,87E+02	2,60E+02	2,00E+02	4,10E+02	3,40E+02	3,00E+02
0E-01	< 1,00E-01	6,00E-01	< 1,00E-01						
0E-01	1,20E+01	1,50E+01	9,40E+00	1,04E+01	5,00E+00	4,00E+00	2,10E+01	1,10E+01	5,00E+00
7E+02	7,28E+02	3,34E+02	2,15E+02	6,81E+01	2,10E+02	1,00E+02	2,60E+02	1,14E+02	3,55E+02
DE+00	< 5,00E+00	6,00E+00	6,20E+00	2,10E+01	7,50E+00	8,00E+00	6,30E+01	3,60E+01	3,50E+01
1E+01	4,00E-01	1,20E+00	< 6,00E+00	< 1,00E+00	6,00E+00				
0E-01	< 5,00E-01	< 5,00E-01	5,00E-01	< 6,00E-01	< 6,00E-01	< 6,00E-01	< 6,00E-01	< 1,00E-01	1,30E-01
DE+00	1,03E+01	1,20E+01	1,00E+01	8,50E+00	1,32E+01	7,80E+00	1,10E+01	1,40E+01	9,50E+00
0E-01	< 5,00E-01	< 5,00E-01	< 6,00E+00	< 2,00E-01	< 2,00E-01				
DE+00	< 1,00E+00	< 1,00E+00	< 1,00E+01						
0E-01	< 5,00E-01	< 5,00E-01	< 6,00E+00	< 1,00E+00	< 1,00E+00				
0E-01	6,00E-01	1,10E+00	5,00E-01	< 1,00E+00	1,45E+00	7,00E-01	5,00E+00	6,00E+00	4,00E-01
DE+00	< 1,00E+00	< 1,00E+00	< 1,00E+01	< 1,00E-01	< 1,00E-01				
6E+01	4,20E+01	4,80E+01	8,10E+01	5,64E+01	9,50E+00	4,30E+01	4,00E+01	2,00E+01	5,10E+01
DE+00	1,10E+00	1,40E+00	1,00E+00	9,00E-01	2,03E+00	1,33E+00	1,40E+00	1,60E+00	1,00E+00
0E-01	< 5,00E-01	< 5,00E-01	< 4,00E-02	< 4,00E-02	1,40E-01	< 4,00E-02	1,40E-01	1,10E-01	< 1,00E-01
3E+03	5,80E+03	1,17E+04	1,26E+04	7,17E+03	8,60E+03	5,50E+03	6,15E+03	5,07E+03	7,55E+03
0E-01	4,00E-01	6,00E+00	< 1,00E+00	4,30E+00	1,90E+00	2,00E+00	1,10E+00	4,30E+00	< 5,00E-01
0E-01	< 1,00E-01	< 1,00E-01	< 2,00E+01	< 1,00E+00	1,70E+00				
DE+00	< 5,00E+00	< 5,00E+00	< 3,00E+02	< 1,00E+01	< 1,00E+01				
0E-01	< 5,00E-01	< 5,00E-01	< 4,00E+01	< 2,00E+02	< 2,00E+02	< 2,00E+02	< 2,00E+02	< 1,00E+00	< 1,00E+00
0E-01	< 5,00E-01	< 5,00E-01	< 4,00E-02	< 1,00E-01	< 1,00E-01				

ırs	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
56	11987	12224	11062	9686	7353	13649	11875	13034	13916
n= . 04	0.005.04	0.405.04	4.005.04	4 555 : 04	4.405.04	0.005.04	0.005.04	0.705.04	0.005.04
DE+01	2,00E+01	2,10E+01	1,96E+01	1,55E+01	4,40E+01	2,00E+01	3,90E+01	2,70E+01	2,06E+01
0E-01	< 1,00E-01	7,00E-01	5,00E-01	7,00E-01	1,30E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01
)E+02	1,48E+02	1,66E+02	2,41E+02	1,50E+02	7,50E+01	1,54E+02	1,47E+02	1,84E+02	8,50E+00
7E+04	1,17E+04	1,29E+04	1,40E+04	1,74E+04	1,79E+04	1,40E+04	1,27E+04	1,61E+04	1,39E+04
5E+02	5,10E+02	3,60E+02	3,45E+02	4,90E+02	3,20E+02	4,30E+02	1,90E+02	2,10E+02	3,54E+02
DE+02	2,55E+02	2,15E+02	2,10E+02	2,60E+02	4,10E+02	2,75E+02	2,50E+02	2,25E+02	2,05E+02
0E-01	< 1,00E-01	< 1,00E-02	< 1,00E-01	< 8,10E+00					
DE+01	1,30E+01	8,60E+00	2,90E+01	1,25E+01	1,67E+01	1,23E+01	1,13E+01	1,50E+01	6,50E+00
)E+02	3,70E+02	3,54E+02	5,62E+02	4,70E+02	6,20E+02	4,58E+02	2,45E+02	3,20E+02	2,12E+02
DE+01	1,12E+01	2,35E+01	1,20E+01	1,10E+01	7,80E+00	1,30E+01	1,80E+01	1,20E+01	7,80E+00
0E-01	< 2,00E-01	< 1,90E+00	6,90E-01	1,30E+00	1,80E+00	2,23E+00	9,30E+00	1,67E+01	9,80E+00
0E-01	4,90E-01	6,00E-02	8,00E-02	1,30E-01	4,70E-01	1,00E-01	9,00E-02	4,00E-01	3,00E-01
DE+00	9,20E+00	7,80E+00	5,60E+00	9,00E+00	2,70E+00	8,90E+00	8,00E+00	1,30E+01	1,00E+01
0E-01	< 5,00E-01								
0E-02	< 1,00E+00	< 2,06E+00	< 1,00E+00						
0E-01	< 2,00E-01	< 5,40E-01	< 1,00E+00	< 1,00E+00	< 1,00E+00	2,00E-01	7,00E-01	2,00E-01	1,00E-01
0E-01	1,80E+00	9,50E-01	2,20E+00	3,50E+00	3,60E+00	1,60E+00	3,40E+00	2,00E+00	4,20E+00
DE+00	< 1,00E+00								
)E+02	1,19E+02	3,39E+01	5,75E+01	8,60E+01	6,98E+01	3,91E+01	2,94E+01	4,30E+01	6,20E+01
0E-01	9,90E-01	7,20E-01	3,80E-01	8,00E-01	1,70E+00	8,90E-01	6,00E-01	1,30E+00	1,20E+00
0E-02	6,00E-02	< 4,00E-01	< 5,00E-01						
DE+03	4,79E+03	5,84E+03	7,12E+03	7,35E+03	8,59E+03	6,43E+03	5,82E+03	6,99E+03	7,04E+03
E+00	4,30E+00	3,60E+00	3,60E+00	2,30E+00	1,20E-01	2,60E+00	3,20E+00	2,40E+00	3,30E+00
0E-01	< 2,00E-01	4,00E-01	< 2,00E-01	< 2,00E-01	< 2,00E-01	2,00E-01	< 2,00E-01	5,00E-01	3,00E-01
DE+00	< 5,00E+00								
0E-02	< 1,00E+00	< 1,00E+00	< 1,00E+00	3,40E+00	4,50E-01	2,00E+00	1,60E+00	3,60E+00	1,70E+00
0E-02	1,50E-01	7,00E-02	< 4,00E-01						

ırs	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
183	14431	12946	17766	14257	8057	8485	10780	11189	8795
		1	1	1	1		1	1	
DE+01	1,05E+01	1,15E+01	9,20E+00	3,60E+01	2,30E+01	1,90E+01	2,50E+01	2,20E+01	2,23E+01
0E-01	3,30E-01	6,00E-01	6,00E-01	3,00E-01	1,30E-01	2,00E-01	1,00E-01	4,00E-02	5,00E-02
DE+02	1,09E+02	8,10E+01	1,14E+02	7,80E+01	7,60E+01	8,30E+01	1,16E+02	1,34E+02	6,00E+01
2E+04	2,54E+04	2,00E+04	2,09E+04	1,86E+04	2,92E+04	2,00E+04	1,13E+04	1,11E+04	8,48E+03
DE+02	4,00E+02	1,80E+02	7,48E+02	5,30E+02	3,90E+02	-	5,61E+02	6,08E+02	3,40E+02
DE+02	2,60E+02	2,60E+02	2,00E+02	2,20E+02	5,50E+02	3,30E+02	3,68E+02	2,25E+02	2,25E+02
0E-01	< 1,00E-01								
DE+01	9,80E+00	6,00E+00	7,70E+00	1,30E+01	1,60E+01	1,20E+01	1,50E+01	1,12E+01	1,51E+01
DE+02	5,13E+02	7,51E+02	7,66E+02	7,00E+02	9,90E+02	2,70E+02	3,42E+02	3,87E+02	3,32E+02
DE+00	1,10E+01	2,10E+01	8,30E+00	8,30E+00	1,14E+01	1,40E+01	1,50E+01	1,20E+01	1,20E+01
0E-01	7,00E-01	2,50E-01	2,90E+00	< 2,00E-01	3,00E-01	< 2,00E-01	4,60E-01	6,30E-01	5,00E+00
0E-02	2,00E-01	6,00E-02	6,00E-02	3,10E-01	7,50E-01	6,00E-01	3,00E-02	2,00E-01	1,50E+00
DE+00	6,70E+00	7,50E+00	1,90E+00	7,20E+00	1,26E+01	1,25E+01	1,00E+01	1,04E+01	9,00E+00
0E-01	< 5,00E-01								
0E-01	< 8,00E-01	< 5,00E-01	< 5,00E-01						
0E-01	< 2,00E-01	< 3,00E-01	< 2,00E-01	< 2,00E-01	< 2,00E-01				
0E+00	5,60E+00	3,60E+00	9,80E+00	5,50E+00	5,60E+00	1,20E-01	2,30E+00	1,23E+00	2,10E+00
0E-01	< 8,00E-01	< 5,00E-01							
5E+02	7,30E+01	1,96E+01	3,18E+02	1,80E+02	5,40E+01	3,86E+02	1,38E+02	1,84E+02	7,30E+01
0E+00	1,00E+00	1,00E+00	6,00E-01	8,90E-01	1,16E+00	1,10E+00	1,00E+00	8,00E-01	1,50E+00
0E-01	< 1,00E-01	< 1,00E-01	1,20E-01	< 1,00E-01	< 1,00E-01	1,60E-01	< 1,00E-01	< 1,00E-02	< 1,00E-01
7E+03	1,05E+04	8,73E+03	7,92E+03	8,10E+03	1,04E+04	8,00E+03	4,58E+03	4,74E+03	4,30E+03
DE+00	4,50E+00	3,50E+00	6,60E+00	1,50E+01	2,00E+01	1,20E+01	2,50E+00	3,30E+00	1,20E+00
0E+00	< 6,00E-01	< 6,00E-01	1,10E+00	< 6,00E-01	< 6,00E-01	< 6,00E-01	< 4,00E-01	< 6,00E-01	< 6,00E-01
0E+00	< 5,00E+00								
0E+00	< 2,00E-01	< 8,00E-01	< 1,90E+00	< 1,90E+00	< 1,90E+00				
0E-01	< 2,00E-01	< 5,00E-02	< 5,00E-02						

ırs	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
11	14021	14904	11970	11380	13672	15572	16911	18213	13997
n= . 04	0.005.04	0.005.04	0.005.04	0.505.04	4.005.04	4 005 : 04	0.005.00	0.005.00	0.705.04
DE+01	2,60E+01	3,60E+01	3,30E+01	3,50E+01	4,00E+01	1,20E+01	3,30E+00	3,00E+00	9,70E+01
0E-01	3,10E-01	2,70E-01	3,50E-01	7,00E-01	2,90E-01	1,90E-01	2,20E-01	5,40E-01	1,90E-01
1E+02	1,23E+02	1,36E+02	8,55E+01	7,30E+01	1,00E+02	1,46E+02	1,07E+02	1,12E+02	6,22E+01
7E+04	1,19E+04	1,50E+04	1,96E+04	1,45E+04	2,13E+04	1,53E+04	1,69E+04	1,84E+04	1,38E+04
	-	-	-	-	-	-	-	-	-
DE+02	1,96E+02	2,40E+02	2,43E+02	4,09E+02	2,60E+02	2,30E+02	2,71E+02	2,08E+02	2,42E+02
0E-01	< 1,00E-01								
7E+01	5,80E+00	9,50E+00	8,70E+00	1,00E+01	8,90E+00	7,70E+00	9,30E+00	9,70E+00	1,54E+01
9E+02	1,18E+03	6,04E+02	9,23E+02	2,15E+02	9,78E+02	3,17E+02	1,30E+03	5,01E+02	6,84E+02
DE+01	1,00E+01	1,75E+01	1,02E+01	1,20E+01	1,55E+01	1,20E+01	1,10E+01	1,05E+01	1,00E+01
0E-01	4,40E-01	2,20E+00	1,40E+00	2,00E-01	1,50E+00	4,70E+00	2,50E+00	5,00E-01	< 1,00E-01
0E-01	2,60E-01	< 1,00E-01	< 1,00E-01	6,40E-01	2,00E-01	1,60E-01	3,00E+00	5,00E-02	3,00E-01
7E+01	1,03E+01	4,20E+00	1,01E+01	5,50E+00	1,13E+01	1,05E+01	6,80E+00	1,13E+01	2,20E+01
0E-01	< 1,00E-01								
0E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	1,60E+00	< 1,00E-01	< 1,00E-01	4,00E+00	6,50E+00	5,00E-01
0E-01	1,40E-01	3,40E-01	1,20E-01	3,80E-01	< 2,00E-01	< 2,00E-01	< 1,00E-01	< 1,00E-01	6,00E-01
3E+00	5,10E+00	5,20E+00	4,80E+00	7,00E+00	7,00E-01	3,90E+00	7,20E+00	7,20E+00	5,60E+00
0E-01	< 5,00E-01	< 2,50E+00	< 2,50E+00	< 2,50E+00					
7E+02	1,14E+02	1,45E+02	9,85E+01	5,87E+01	1,34E+02	1,24E+02	6,30E+01	1,58E+02	1,32E+02
6E+00	7,80E-01	3,90E-01	1,00E+00	2,10E+00	1,50E+00	1,50E+00	1,20E+00	1,20E+00	2,20E+00
0E-01	< 1,00E-01	2,00E-01	< 1,00E-01						
DE+03	6,10E+03	8,50E+03	8,80E+03	5,30E+03	7,41E+03	6,72E+03	7,70E+03	9,03E+03	5,54E+03
E+00	2,30E+00	2,60E+00	2,90E+00	3,60E+00	3,20E+00	1,70E+00	5,40E+00	2,29E+00	5,30E+00
0E-01	1,10E-01	2,40E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	8,50E-01	3,70E-01	< 1,00E-01
E+00	< 2,00E+00								
E+00	< 1,00E+00	6,00E-01	< 1,00E+00						
0E-01	< 1,00E-01	6,00E-01							

rs	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
32	14530	12721	14500	15465	10301	14802	17012	17323	15822
DE 104	2 105 101	2 575 + 01	1 755 101	2.565.01	2 205 104	2.005+01	2.705.01	2 605 101	1 200F+04
)E+01	3,10E+01	2,57E+01	1,75E+01	2,56E+01	3,30E+01	2,90E+01	2,70E+01	2,60E+01	2,90E+01
0E-01	3,30E-01	3,60E-01	6,40E-01	5,20E-01	2,80E-01	2,40E-01	4,30E-01	1,40E-01	2,80E-01
E+01	1,52E+02	1,02E+02	1,37E+02	1,00E+02	1,09E+02	7,40E+01	1,34E+02	1,16E+02	1,08E+02
E+04	2,31E+04	1,95E+04	1,90E+04	2,18E+04	1,96E+04	1,73E+04	1,70E+04	1,62E+04	1,71E+04
	-	-	-	-	-	-	-	-	-
6E+02	2,75E+02	2,45E+02	2,60E+02	8,71E+02	4,97E+02	3,90E+02	3,20E+02	2,88E+02	2,69E+02
0E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01						
3E+01	1,43E+01	8,00E+00	8,50E+00	6,20E+01	1,28E+01	1,47E+01	1,42E+01	1,45E+01	5,60E+00
3E+03	9,40E+02	9,28E+02	6,18E+02	2,56E+03	1,42E+03	1,14E+03	1,11E+03	1,00E+03	8,79E+02
5E+01	1,55E+01	1,50E+01	2,10E+01	3,24E+02	3,15E+01	2,67E+01	4,10E+01	2,90E+01	3,50E+01
0E-01	1,50E+00	6,00E-01	8,00E-01	2,30E+00	7,20E-01	2,40E+00	< 1,00E-01	< 1,00E-01	< 1,00E-01
0E-02	1,70E-01	1,60E-01	5,90E-01	2,60E-01	1,40E-01	2,90E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01
E+01	4,20E+01	1,80E+01	4,86E+01	1,70E+01	1,67E+01	1,74E+01	1,21E+01	1,47E+01	1,10E+01
0E-02	4,00E-02	< 5,00E-02	< 5,00E-02	9,00E-02	7,50E-01	1,00E-01	4,90E-01	< 1,00E-01	< 1,00E-01
0E-01	8,60E-01	< 5,00E-01	3,90E+00	8,40E-01	1,10E+00	2,30E+00	7,30E-01	2,96E+00	5,00E-01
0E-01	2,00E-01	2,00E-01	< 1,00E-01	2,00E-01	< 1,00E-01	< 1,00E-01	2,60E-01	3,00E-02	1,00E-01
E+00	4,05E+00	2,50E+00	6,40E+00	9,60E+00	3,34E+00	4,50E+00	5,70E+00	5,20E+00	7,00E+00
0E-01	< 2,00E-01	< 2,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01				
E+02	1,70E+02	1,24E+02	1,17E+02	2,25E+02	9,40E+01	2,58E+02	1,60E+02	1,34E+02	1,15E+02
E+00	1,90E+00	2,00E+00	3,20E+00	1,50E+00	3,40E+00	2,50E+00	1,90E+00	2,20E+00	1,90E+00
0E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	3,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01
1E+03	9,03E+03	7,68E+03	8,37E+03	1,10E+04	8,40E+03	8,50E+03	8,38E+03	6,80E+03	6,80E+03
E+00	4,70E+00	< 1,80E+00	3,50E+00	9,60E+00	2,40E+00	6,30E+00	3,20E+00	2,40E+00	4,50E+00
0E-01	1,40E+00	< 2,00E-01	8,00E-01	< 5,00E-01	8,70E-01	1,50E-01	< 1-,00E-01	< 1,00E-01	< 1,00E-01
DE+00	< 2,00E+00	< 2,00E+00	< 2,00E+00						
E+00	9,70E-01	< 1,00E-01	9,10E-01	< 1,00E-01	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00
-	-	-	1,40E-01	< 5,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-01	< 1,00E-01	< 1,00E-01

rs	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
90	12078	15056	15390	14614	10805	17052	15927	12768	11578
NE : 04	0.705.04	4.005.04	0.005.04	0.005.04	0.005.04	0.405.04	0.005.04	0.005.04	0.455.04
DE+01	3,70E+01	4,00E+01	3,00E+01	3,00E+01	3,30E+01	2,40E+01	2,60E+01	3,20E+01	3,15E+01
0E-01	4,00E-01	3,00E-01	4,00E-01	5,00E-01	1,60E-01	4,00E-01	1,40E-01	4,30E-01	8,00E-01
)E+01	6,80E+01	7,10E+01	6,30E+01	3,10E+01	4,50E+01	5,40E+01	9,90E+01	8,00E+01	4,90E+01
1E+04	1,72E+04	2,78E+04	2,36E+04	2,98E+04	1,24E+04	2,20E+04	2,48E+04	2,14E+04	2,08E+04
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
0E-02	< 1,00E-01	< 1,00E+01	< 1,00E-01	< 1,00E-02	< 1,00E-01				
)E+01	3,20E+01	1,80E+01	1,70E+01	1,40E+01	2,00E+01	1,70E+01	2,60E+01	2,54E+01	2,74E+01
3E+02	5,29E+02	9,53E+02	1,12E+03	1,03E+03	5,83E+02	8,74E+02	4,21E+02	7,75E+02	1,34E+03
1E+01	1,00E+01	2,72E01	1,80E+01	1,90E+01	3,00E+01	2,70E+01	3,40E+01	3,35E+01	1,93E+01
0E-01	3,40E+00	1,20E+00	8,00E+00	5,70E+00	9,00E-01	< 3,00E-01	4,00E-01	2,50E+00	3,60E+00
0E-01	2,60E-01	1,80E-01	1,00E-01	2,00E-01	1,00E-01	1,00E-01	1,00E-01	2,00E+00	7,00E-02
E+01	2,20E+01	7,30E+00	1,39E+01	2,04E+01	1,09E+01	8,70E+00	7,00E+00	1,22E+01	2,28E+01
0E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02	< 4,00E-02	< 2,00E-02	< 3,00E-02	< 4,00E-02	< 1,00E-01	< 4,00E-02
)E+00	1,40E+00	9,00E-01	3,85E+00	2,40E+01	1,19E+01	2,30E+01	1,20E+00	9,60E+00	8,00E+00
0E-02	5,00E-02	< 5,00E-02	< 5,00E-02	7,00E-01	6,00E-02	3,00E-02	< 2,00E-01	< 2,00E-01	< 4,00E-02
E+00	5,00E-01	1,00E+00	5,00E-01	9,00E-01	4,00E-01	6,00E-01	4,00E-01	2,80E-01	3,70E-01
0E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 2,00E-02	< 1,00E-01	< 1,00E-01	< 2,00E-02	< 1,00E-01	< 2,00E-02
6E+02	6,24E+01	1,02E+02	8,83E+01	4,80E+01	5,25E+01	2,38E+02	9,52E+01	1,18E+02	5,31E+01
E+00	1,00E+01	3,50E+00	5,00E+00	7,00E+00	3,60E+00	3,70E+00	1,60E+00	2,50E+00	5,60E+00
0E-02	< 5,00E-02	< 1,00E-01	< 1,00E-01						
6E+03	6,55E+03	1,03E+04	8,93E+04	1,16E+04	5,18E+03	8,08E+03	9,36E+03	1,03E+04	8,55E+03
DE+01	1,08E+02	5,90E+01	1,15E+02	7,10E+01	3,90E+01	9,10E+01	6,70E+01	8,00E+01	1,02E+02
0E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	1,00E+00	8,00E-01	< 5,00E-01	< 5,00E-01	< 2,00E-01	< 5,00E-01
DE+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 2,00E+00	< 1,00E+00	< 2,00E+00	< 2,00E+00	< 1,00E+00	< 2,00E+00
	-	-	-	-	-	-	-	-	-
.	-	-	-	-	-	-	-	-	-

ırs	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
82	12277	9887	13143	13237	8513	12241	15404	12894	12605
o= . 0.4	1 4005.00	l 0.055.04		0.005.04	l 0.005.04	0.005.04	0.045.04	1 405.00	1 505.00
6E+01	1,30E+02	2,65E+01	2,94E+01	2,20E+01	2,00E+01	3,00E+01	8,24E+01	1,42E+02	4,50E+00
0E-01	4,60E-01	9,00E-01	1,00E+00	2,00E-01	2,00E-01	6,00E-01	3,00E-01	4,00E-01	4,00E-01
2E+02	1,40E+02	1,27E+02	1,78E+02	9,00E+01	8,00E+01	1,31E+02	1,37E+02	1,57E+02	1,83E+02
3E+04	1,31E+04	2,56E+04	2,75E+04	1,76E+04	7,90E+03	1,60E+04	1,58E+04	9,00E+03	2,30E+04
	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
0E-01	< 1,00E-01								
7E+01	1,79E+01	1,14E+01	1,47E+01	4,80E+00	3,10E+01	1,92E+01	2,10E+01	3,50E+01	3,00E+00
3E+03	2,15E+03	2,01E+03	2,04E+03	4,63E+02	1,20E+03	1,15E+03	8,83E+02	6,76E+02	1,42E+03
9E+00	7,00E+00	5,88E+00	1,00E+01	3,30E+00	2,80E+00	5,60E+00	4,40E+00	6,30E+00	8,00E+00
DE+00	1,60E+00	6,00E-01	1,80E+00	9,00E-01	1,50E+00	9,00E-01	7,00E-01	5,00E-01	6,00E-01
0E-01	6,00E-02	9,00E-02	1,80E-01	2,00E-01	1,90E-01	1,40E-01	8,50E-01	1,20E-01	1,70E-01
5E+01	1,76E+01	1,18E+01	1,25E+01	1,40E+01	1,80E+01	2,10E+01	2,10E+01	1,40E+01	2,20E+01
0E-02	< 2,00E-02								
0E+00	1,16E+01	4,50E+00	5,20E+00	4,20E+00	2,00E+00	3,00E+00	1,40E+00	2,90E+00	1,50E+00
0E-02	6,00E-02	7,00E-02	8,00E-02	3,00E-02	4,00E-02	2,00E-02	4,00E-02	5,00E-02	1,00E-01
DE+00	1,30E+00	1,60E+00	1,70E+00	1,70E+00	1,20E+00	3,00E+00	8,00E-01	1,90E+00	2,60E+00
0E-01	< 1,00E-01								
1E+02	3,95E+02	2,04E+02	3,20E+02	7,32E+02	7,80E+01	1,20E+02	3,20E+02	3,70E+02	1,01E+02
7E+01	5,21E+01	1,99E+01	1,00E+01	8,00E+00	8,00E+00	1,00E+01	4,40E+01	1,40E+01	4,00E+00
0E-02	4,00E-02	< 5,00E-02							
9E+03	7,72E+03	9,29E+03	9,57E+03	6,00E+03	4,88E+03	6,12E+03	4,46E+03	6,45E+03	9,75E+03
0E-01	2,10E-01	1,51E+02	1,06E+02	6,70E+01	1,75E+02	1,71E+02	8,20E+01	1,24E+02	1,24E+02
0E-01	5,00E-01	7,00E-01	7,00E-01	6,00E-01	4,00E-01	4,00E-01	5,00E-01	6,00E-01	< 1,00E-01
0E+00	< 5,00E+00								
	_	_	_	-	_	-	-	_	
	-	-	-	-	-	-	-	-	-
	1	1	1		1			1	1 1

Annexe N° 3

Bilans mensuels de la charge chimique des rejets radioactifs (A+V) de COGEMA La Hague

Années 2000 à 1987

Masses en kilogramme

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
0	9320	13208	11235	13558	5133	11726	14011	12160	12071	131763
E+02	8,11E+01	9,77E+01	8,99E+01	2,71E+02	8,21E+01	1,10E+02	1,36E+02	1,91E+02	1,16E+02	1,48E+03
E+00	1,86E+00	9,25E+00	< 1,12E+00	1,22E+01	5,65E-01	< 1,17E+00	8,41E+00	< 1,22E+00	3,86E+00	4,87E+01
E+03	3,15E+03	5,89E+03	7,92E+03	2,85E+03	1,06E+03	4,69E+03	7,92E+03	8,50E+03	4,09E+03	5,75E+04
E+05	2,28E+05	3,30E+05	2,80E+05	4,12E+05	6,31E+04	2,86E+05	3,52E+05	3,09E+05	3,78E+05	3,33E+06
E+04	1,45E+04	2,03E+04	1,74E+04	1,82E+04	6,88E+03	1,62E+04	1,91E+04	2,21E+04	2,03E+04	1,95E+05
E+03	1,86E+03	2,31E+03	1,40E+03	2,17E+03	1,28E+03	2,64E+03	2,73E+03	1,74E+03	2,17E+03	2,43E+04
E+00	< 9,32E-01	< 1,32E+00	< 1,12E+00	< 1,36E+00	< 5,13E-01	< 1,17E+00	< 1,40E+00	1,1,22E+00	< 1,21E+00	< 1,32E+01
E+02	3,26E+01	< 6,60E+01	< 5,62E+01	6,78E+01	< 2,57E+01	7,27E+01	2,80E+02	2,53E+02	2,00E+02	1,53E+03
E+02	3,26E+02	6,95E+02	2,92E+01	7,70E+02	1,03E+01	3,52E+01	8,83E+02	1,95E+01	3,45E+02	3,90E+03
E+01	9,32E+00	7,92E+01	6,74E+01	1,08E+02	3,85E+01	1,52E+02	1,96E+02	1,09E+02	1,46E+02	1,20E+03
E+01	2,61E+01	1,72E+01	< 1,12E+01	< 1,36E+01	< 5,13E+00	< 1,17E+01	< 1,40E+01	2,03E+01	< 1,21E+01	1,61E+02
E-01	< 4,66E-01	< 6,60E-01	< 5,62E-01	8,13E-01	< 2,57E-01	1,41E+00	2,24E+00	9,85E-01	1,01E+00	1,11E+01
E+01	1,77E+01	4,36E+01	2,02E+01	2,30E+01	2,05E+01	2,35E+01	4,90E+01	2,31E+01	2,90E+01	3,30E+02
E-01	< 4,66E-01	< 6,60E-01	< 5,62E-01	< 6,78E-01	< 2,57E-01	< 5,86E-01	< 7,01E-01	< 6,08E-01	< 6,04E-01	< 6,59E+00
E-01	< 4,66E-01	< 6,60E-01	< 5,62E-01	1,08E+00	< 2,57E-01	1,06E+00	2,24E+00	< 6,08E-01	7,12E-01	9,12E+00
E-01	< 4,66E-01	< 6,60E-01	< 5,62E-01	< 6,78E-01	< 2,57E-01	< 5,86E-01	< 7,01E-01	< 6,08E-01	< 6,04E-01	< 6,59E+00
E+01	< 9,32E+00	< 1,32E+01	< 1,12E+01	< 1,36E+01	< 5,13E+00	< 1,17E+01	< 1,40E+01	< 1,22E+01	< 1,21E+01	< 1,32E+02
E-01	< 1,21E-01	< 1,72E-01	< 1,46E-01	< 1,76E-01	< 6,67E-02	< 1,52E-01	< 1,82E-01	< 1,58E-01	< 1,57E-01	< 1,71E+00
E+02	2,20E+02	2,77E+02	1,57E+02	3,32E+02	4,88E+01	2,09E+02	3,78E+02	3,28E+02	2,70E+02	2,68E+03
E+00	3,73E+00	5,28E+00	4,49E+00	5,42E+00	4,62E+00	5,86E+00	9,81E+00	9,73E+00	7,85E+00	7,12E+01
E-01	< 4,66E-01	< 6,60E-01	< 5,62E-01	< 6,78E-01	< 2,57E-01	< 5,86E-01	< 7,01E-01	< 6,08E-01	< 6,04E-01	< 6,59E+00
E+05	1,09E+05	1,58E+05	1,29E+05	1,91E+05	3,48E+04	1,38E+05	1,58E+05	1,61E+05	1,69E+05	1,55E+06
E+00	7,46E+00	1,58E+01	8,99E+00	9,49E+00	5,65E+00	8,21E+00	9,81E+00	6,69E+00	1,21E+01	1,04E+02
E+00	< 1,86E+00	< 2,64E+00	< 2,25E+00	< 2,71E+00	< 1,03E+00	< 2,35E+00	< 2,80E+00	< 2,43E+00	< 2,41E+00	< 2,64E+01
E-01	< 4,66E-01	< 6,60E-01	< 5,62E-01	< 6,78E-01	< 2,57E-01	< 5,86E-01	< 7,01E-01	< 6,08E-01	< 6,04E-01	7,08E+00
E+01	< 9,32E+00	< 1,32E+01	< 1,12E+01	< 1,36E+01	< 5,13E+00	< 1,17E+01	< 1,40E+01	< 1,22E+01	< 1,21E+01	< 1,32E+02
E-01	< 4,66E-01	< 6,60E-01	< 5,62E-01	< 6,78E-01	< 2,57E-01	< 5,86E-01	< 7,01E-01	< 6,08E-01	1,03E+00	7,01E+00

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
1	12661	12812	12776	12739	5752	13695	14802	13894	15009	153152
E+02	1,71E+02	2,82E+02	9,20E+01	1,27E+02	6,67E+01	6,16E+01	1,84E+02	9,73E+01	1,62E+02	1,89E+03
E+00	1,90E+00	< 1,28E+00	2,04E+00	2,04E+00	2,30E+00	1,92E+00	5,03E+00	5,84E+00	< 1,50E+00	3,90E+01
E+03	6,52E+03	5,70E+03	7,15E+03	4,46E+03	1,65E+03	5,89E+03	6,81E+03	5,77E+03	4,68E+03	7,09E+04
E+05	3,42E+05	3,14E+05	2,84E+05	3,77E+05	7,31E+04	2,11E+05	2,96E+05	3,04E+05	3,54E+05	3,60E+06
E+04	1,86E+04	1,90E+04	1,83E+04	2,01E+04	7,94E+03	1,57E+04	1,81E+04	1,51E+04	1,89E+04	2,02E+05
E+03	1,90E+03	1,92E+03	2,56E+03	2,04E+03	1,44E+03	2,74E+03	3,55E+03	2,99E+03	2,25E+03	2,82E+04
E+00	< 1,27E+00	< 1,28+00	< 1,28E+00	< 1,27E+00	< 5,75E-01	< 1,37E+00	< 1,48E+00	< 1,39E+00	< 1,50E+00	< 1,53E+01
E+02	2,41E+02	2,05E+02	1,79E+02	< 6,37E+01	3,74E+01	9,86E+01	1,48E+02	9,73E+01	1,08E+02	1,56E+03
E+02	4,05E+02	1,83E+02	1,66E+02	1,91E+02	2,30E+02	1,92E+02	4,81E+02	5,42E+02	8,56E+01	4,52E+03
E+02	5,70E+01	1,31E+02	9,97E+01	7,90E+01	7,94E+01	3,22E+02	3,60E+02	3,14E+02	1,49E+02	2,11E+03
E+01	3,17E+01	< 1,28E+01	< 1,28E+01	< 1,27E+01	< 5,75E+00	< 1,37E+01	< 1,48E+01	< 1,39E+01	< 1,50E+01	1,72E+02
E+00	6,33E-01	6,41E-01	3,19E-01	3,82E-01	5,18E-01	6,85E-01	5,18E-01	9,59E-01	9,01E-01	1,09E+01
E+01	3,55E+01	3,59E+01	2,81E+01	4,08E+01	4,60E+01	4,93E+00	4,74E+01	4,45E+01	3,00E+01	4,30E+02
E+00	< 2,53E+00	< 2,56E+00	< 2,56E+00	< 2,55E+00	< 1,15E+00	< 2,74E+00	< 2,96E+00	< 2,78E+00	< 3,00E+00	< 3,06E+01
E+01	< 1,27E+01	< 1,28E+01	< 1,28E+01	< 1,27E+01	< 5,75E+00	< 1,37i:+01	< 1,48E+01	< 1,39E+01	< 1,50E+01	< 1,53E+02
E+01	< 1,27E+01	< 1,28E+01	< 1,28E+01	< 1,27E+01	< 5,75E+00	< 1,37E+01	< 1,48E+01	< 1,39E+01	< 1,50E+01	< 1,53E+02
E+01	3,80E+01	< 1,28E+01	< 1,28E+01	< 1,27E+01	< 5,75E+00	< 1,37E+01	< 1,48E+01	< 1,39E+01	< 1,50E+01	1,93E+02
E+01	< 1,27E+01	< 1,28E+01	< 1,28E+01	< 1,27E+01	< 5,75E+00	< 1,37E+01	< 1,48E+01	< 1,39E+01	< 1,50E+01	< 1,53E+02
E+02	2,03E+02	3,59E+02	2,56E+02	2,55E+02	6,33E+01	1,64E+02	4,00E+02	2,92E+02	1,88E+02	3,13E+03
E+01	9,50E+00	9,61E+00	9,33E+00	1,02E+01	8,05E+00	8,22E+00	1,33E+01	1,29E+01	7,50E+00	1,11E+02
E+00	< 1,27E+00	< 1,28E+00	< 1,28E+00	< 1,27E+00	< 5,75E-01	< 1,37E+00	< 1,48E+00	< 1,39E+00	< 1,50E+00	< 1,53E+01
E+05	1,63E+05	1,46E+05	1,34E+05	1,66E+05	3,81E+04	1,02E+05	1,29E+05	1,36E+05	1,67E+05	1,65E+06
E+01	1,14E+01	9,99E+00	1,10E+01	1,27E+01	3,85E+00	9,18E+00	9,77E+00	6,95E+00	< 7,50E+00	1,30E+02
E+01	< 1,27E+01	< 1,28E+01	< 1,28E+01	< 1,27E+01	< 5,75E+00	< 1,37E+01	< 1,48E+01	< 1,39E+01	< 1,50E+01	< 1,53E+02
E+02	< 1,27E+02	< 1,28E+02	< 1,28E+02	< 1,27E+02	< 5,75E+01	< 1,37E+02	< 1,48E+02	< 1,39E+02	< 1,50E+02	< 1,53E+03
E+01	< 1,27E+01	< 1,28E+01	< 1,28E+01	< 1,27E+01	< 5,75E+00	< 1,37E+01	< 1,48E+01	< 1,39E+01	< 1,50E+01	< 1,53E+02
E+00	< 1,27E+00	< 1,28E+00	< 1,28E+00	< 1,27E+00	< 5,75E-01	< 1,37E+00	< 1,48E+00	< 1,39E+00	< 1,50E+00	< 1,53E+01

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
5	13095	14214	12801	12511	6564	11978	13705	12487	13400	150110
E+02	1,31E+02	1,56E+02	3,84E+01	1,81E+02	1,18E+02	1,20E+02	1,37E+02	9,99E+01	1,81E+02	1,67E+03
E+00	3,14E+00	1,85E+00	1,28E+00	3,13E+00	1,31E+00	< 1,20E+00	< 1,37E+00	< 1,25E+00	< 1,34E+00	2,42E+01
E+03	6,29E+03	1,03E+04	9,09E+03	8,13E+03	1,71E+03	5,87E+03	7,77E+03	9,55E+03	9,25E+03	8,44E+04
05	2,70E+05	3,44E+05	2,56E+05	3,30E+05	8,53E+04	2,42E+05	2,26E+05	2,21E+05	3,23E+05	3,31E+06
E+04	1,56E+04	1,52E+04	1,10E+04	1,71E+04	1,69E+04	1,49E+04	1,58E+04	2,15E+04	1,70E+04	1,93E+05
E+03	3,27E+03	2,49E+03	1,92E+03	1,88E+03	2,63E+03	5,99E+02	2,06E+03	1,87E+03	2,35E+03	2,98E+04
E+00	< 1,31E+00	< 1,42E+00	< 1,28E+00	< 1,25E+00	< 6,56E-01	< 1,20E+00	< 1,37E+01	< 1,25E+01	< 1,34E+00	< 3,86E+01
E+02	7,46E+01	3,20E+02	< 6,40E+01	< 6,26E+01	< 3,28E+01	2,25E+02	1,37E+02	2,00E+02	< 6,70E+01	1,51E+03
E+02	7,60E+02	7,68E+02	1,92E+02	5,63E+02	2,30E+02	2,81E+02	4,11E+01	3,75E+01	6,70E+01	4,32E+03
E+02	2,45E+02	2,56E+02	1,61E+02	2,50E+02	1,18E+02	2,46E+02	8,91E+01	9,37E+01	6,03E+01	2,84E+03
E+01	< 1,31E+01	< 1,42E+01	< 1,28E+01	< 1,25E+01	< 6,56E+00	7,67E+01	3,43E+01	1,37E+01	< 1,34E+01	2,43E+02
E-01	3,93E-01	5,69E-01	8,96E-01	3,75E-01	4,59E-01	3,59E-01	5,48E-01	7,49E-01	1,34E+00	7,79E+00
E+01	3,27E+01	2,84E+01	3,20E+01	3,25E+01	1,77E+01	2,99E+01	4,80E+01	1,87E+01	3,48E+01	4,32E+02
E+00	< 2,62E+00	< 2,84E+00	< 2,56E+00	< 2,50E+00	< 1,31E+00	< 2,40E+00	< 2,74E+00	< 2,50E+00	< 2,68E+00	< 3,00E+01
E+01	< 1,31E+01	< 1,42E+01	< 1,28E+01	< 1,25E+01	< 6,56E+00	< 1,20E+01	< 1,37E+01	< 1,25E+01	< 1,34E+01	< 1,50E+02
E+01	< 1,31E+01	< 1,42E+01	< 1,28E+01	< 1,25E+01	< 6,56E+00	< 1,20E+01	< 1,37E+01	< 1,25E+01	< 1,34E+01	< 1,50E+02
E+01	< 1,31E+01	< 1,42E+01	< 1,28E+01	< 1,25E+01	1,12E+01	< 1,20E+01	< 1,37E+01	< 1,25E+01	< 1,34E+01	1,55E+02
E+01	< 1,31E+01	< 1,42E+01	< 1,28E+01	< 1,25E+01	< 6,56E+00	< 1,20E+01	< 1,37E+01	< 1,25E+01	< 1,34E+01	< 1,50E+02
E+02	3,01E+02	3,27E+02	2,94E+02	5,13E+02	5,38E+01	1,74E+02	1,71E+02	2,00E+02	2,68E+02	3,33E+03
E+00	5,24E+00	4,26E+00	5,12E+00	5,00E+00	5,25E+00	8,38E+00	9,59E+00	5,62E+00	4,02E+00	7,50E+01
E+00	< 1,31E+00	< 1,42E+00	< 1,28E+00	< 1,25E+00	< 6,56E-01	< 1,20E+00	< 1,37E+00	< 1,25E+00	< 1,34E+00	< 1,50E+01
E+05	1,30E+05	1,61E+05	1,16E+05	1,50E+05	5,38E+04	1,11E+05	1,13E+05	1,13E+05	1,54E+05	1,56E+06
E+00	2,23E+01	9,52E+00	1,59E+01	1,25E+01	9,85E+00	1,44E+01	4,11E+01	9,99E+00	1,74E+01	1,87E+02
E+01	< 1,31E+01	< 1,42E+01	< 1,28E+01	< 1,25E+01	< 6,56E+00	< 1,20E+01	< 1,37E+01	< 1,25E+01	< 1,34E+01	< 1,50E+02
E+02	< 1,31E+02	< 1,42E+02	< 1,28E+02	< 1,25E+02	< 6,56E+01	< 1,20E+02	< 1,37E+02	< 1,25E+02	< 1,34E+02	< 1,50E+03
E+01	< 1,31E+01	< 1,42E+01	< 1,28E+01	< 1,25E+01	< 6,56E+00	< 1,20E+01	< 1,37E+01	< 1,25E+01	< 1,34E+01	< 1,50E+02
E+00	< 1,31E+00	< 1,42E+00	< 1,28E+00	< 1,25E+00	< 6,56E-01	< 1,20E+00	< 1,37E+00	< 1,25E+00	< 1,34E+00	< 1,50E+01

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
5	14070	14526	14703	11657	6963	10766	13704	14658	13030	154546
E+02	2,39E+02	7,26E+01	8,82E+01	9,33E+01	5,10E+03	3,93E+03	1,33E+03	1,96E+03	1,69E+02	1,52E+04
E+00	2,25E+00	2,91E+00	1,47E+00	1,17E+00	6,96E-01	< 1,08E+00	2,74E+00	5,72E+00	< 1,30E+00	2,80E+01
E+03	8,30E+03	8,93E+03	9,34E+03	4,08E+03	2,16E+02	2,42E+03	6,04E+03	9,66E+03	5,54E+03	7,53E+04
E+05	3,12E+05	3,73E+05	3,25E+05	3,08E+05	1,20E+05	1,30E+05	2,52E+05	2,86E+05	2,94E+05	3,35E+06
E+04	2,50E+04	2,72E+04	2,00E+04	2,68E+04	9,33E+03	1,49E+04	1,64E+04	1,39E+04	1,76E+04	2,45E+05
E+03	4,22E+03	4,07E+03	5,15E+03	3,50E+03	2,30E+03	2,96E+03	6,71E+02	4,40E+03	2,28E+03	4,10E+04
E+00	< 1,41E+00	< 1,45E+00	< 1,47E+00	< 1,17E+00	< 6,96E-01	< 1,08E+00	< 1,37E+00	< 1,47E+00	1,82E+01	3,24E+01
E+02	1,79E+02	2,98E+02	2,21E+02	9,68E+01	4,32E+01	< 5,38E+01	9,59E+01	1,47E+02	< 1,30E+02	1,55E+03
E+02	1,13E+02	3,34E+02	2,35E+02	9,91E+01	2,16E+02	1,83E+02	2,95E+02	9,38E+02	< 4,56E+01	2,88E+03
E+02	5,91E+02	3,34E+02	3,82E+02	2,27E+02	2,99E+02	4,14E+02	2,92E+02	4,10E+02	3,39E+02	4,00E+03
E+01	3,52E+01	6,97E+01	< 1,47E+01	< 1,17E+01	1,25E+01	< 1,08E+01	< 1,37E+01	< 1,47E+01	2,87E+01	2,52E+02
E+00	< 4,22E-01	2,18E+00	1,32E+00	8,16E-01	4,18E-01	4,31E-01	1,78E+00	2,05E+00	4,95E-01	1,37E+01
E+02	1,41E+02	8,72E+01	7,35E+01	6,64E+01	1,60E+02	1,24E+02	7,54E+01	8,36E+01	4,17E+01	1,10E+03
E+00	< 2,81E+00	< 2,91E+00	< 2,94E+00	< 2,33E+00	< 1,39E+00	< 2,15E+00	< 2,74E+00	< 2,93E+00	< 2,61E+00	< 3,09E+01
E+01	< 1,41E+01	< 1,45E+01	< 1,47E+01	< 1,17E+01	< 6,96E+00	< 1,08E+01	< 1,37E+01	< 1,47E+01	< 1,30E+01	< 1,55E+02
E+01	< 1,41E+01	< 1,45E+01	< 1,47E+01	< 1,17E+01	< 6,96E+00	< 1,08E+01	< 1,37E+01	< 1,47E+01	< 1,30E+01	< 1,55E+02
E+01	< 1,41E+01	< 1,45E+01	< 1,47E+01	< 1,17E+01	< 6,96E+00	< 1,08E+01	< 1,37E+01	< 1,47E+01	< 1,30E+01	1,68E+02
E+01	< 1,41E+01	< 1,45E+01	< 1,47E+01	< 1,17E+01	< 6,96E+00	< 1,08E+01	< 1,37E+01	< 1,47E+01	< 1,30E+01	< 1,55E+02
E+02	3,66E+02	7,26E+02	4,26E+02	3,10E+02	2,47E+02	2,05E+02	2,88E+02	3,93E+02	2,08E+02	4,43E+03
E+01	3,10E+01	8,72E+00	5,88E+00	5,83E+00	2,99E+02	2,69E+02	7,95E+01	1,14E+02	5,21E+00	8,83E+02
E+00	< 1,41E+00	< 1,45E+00	< 1,47E+00	< 1,17E+00	< 6,96E-01	< 1,08E+00	< 1,37E+00	< 1,47E+00	< 1,30E+00	< 1,43E+01
E+05	1,52E+05	1,80E+05	1,51E+05	1,50E+05	5,86E+04	7,58E+04	1,20E+05	1,32E+05	1,38E+05	1,61E+06
E+01	1,41E+01	1,45E+01	1,47E+01	9,33E+00	8,36E+00	1,29E+01	1,23E+01	< 7,33E+00	1,30E+01	1,46E+02
E+01	< 1,41E+01	< 1,45E+01	< 1,47E+01	< 1,17E+01	< 6,96E+00	< 1,08E+01	< 1,37E+01	< 1,47E+01	< 1,30E+01	< 1,55E+02
E+02	< 1,41E+02	< 1,45E+02	< 1,47E+02	< 1,17E+02	< 6,96E+01	< 1,08E+02	< 1,37E+02	< 1,47E+02	< 1,30E+02	< 1,55E+03
E+01	< 1,41E+01	< 1,45E+01	< 1,47E+01	< 1,17E+01	< 6,96E+00	< 1,08E+01	< 1,37E+01	< 1,47E+01	< 1,30E+01	< 1,55E+02
E+00	< 1,41E+00	< 1,45E+00	< 1,47E+00	< 1,17E+00	< 6,96E-01	< 1,08E+00	< 1,37E+00	< 1,47E+00	< 1,30E+00	< 1,55E+01

5	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
9	14294	15753	15053	12777	8777	13475	14803	13956	13848	165709
E+02	1,97E+02	2,99E+03	2,41E+02	2,17E+03	2,63E+02	2,83E+02	4,88E+02	4,75E+02	1,25E+02	9,56E+03
E+00	2,86E+00	< 1,58E+00	1,51E+00	< 1,28E+00	2,28E+00	< 1,35E+00	< 1,48E+00	2,79E+00	2,77E+00	2,50E+01
E+03	2,50E+03	7,25E+03	6,62E+03	4,47E+03	9,48E+02	6,74E+03	7,85E+03	7,61E+03	7,01E+03	7,15E+04
E+05	3,32E+05	3,50E+05	3,61E+05	3,08E+05	2,16E+05	2,71E+05	3,97E+05	3,36E+05	3,19E+05	3,73E+06
E+04	2,13E+04	2,02E+04	2,11E+04	2,67E+04	1,56E+04	2,48E+04	2,84E+04	3,04E+04	2,44E+04	2,75E+05
E+03	4,65E+03	4,73E+03	5,27E+03	4,15E+03	3,51E+03	3,71E+03	4,07E+03	4,19E+03	3,81E+03	4,14E+04
E+00	< 1,43E+00	< 1,58E+00	< 1,51E+00	< 1,28E+00	< 8,78E-01	< 1,35E+00	< 1,48E+00	< 1,40E+00	< 1,38E+00	< 1,66E+01
E+01	1,40E+02	7,88E+01	1,13E+02	9,48E+01	1,23E+02	1,08E+02	7,40E+01	8,37E+01	8,03E+01	1,23E+03
E+01	1,03E+03	7,17E+02	1,35E+03	1,53E+02	4,13E+02	5,79E+02	3,70E+02	1,07E+03	1,72E+03	9,23E+03
E+02	5,43E+02	1,51E+03	2,33E+02	5,75E+02	3,07E+02	4,31E+02	2,44E+02	1,54E+02	1,76E+02	6,17E+03
E+01	< 1,43E+01	2,36E+01	6,62E+01	3,83E+00	1,84E+01	< 1,35E+01	3,70E+01	6,56E+01	< 1,38E+01	2,99E+02
E-01	1,43E+00	4,73E+00	6,02E+00	3,83E-01	8,78E-01	1,35E+00	2,22E+00	8,37E-01	1,94E+00	9,69E+01
E+02	6,58E+01	1,58E+02	5,27E+02	1,15E+02	8,78E+01	6,06E+01	4,44E+01	1,03E+02	8,45E+01	1,55E+03
E+00	4,29E+00	6,30E+00	< 3,01E+00	< 2,56E+00	1,76E+00	< 2,70E+00	4,44E+00	< 2,79E+00	< 2,77E+00	3,92E+01
E+01	< 1,43E+01	< 1,58E+01	< 1,51E+01	< 1,28E+01	< 8,78E+00	< 1,35E+01	< 1,48E+01	< 1,40E+01	< 1,38E+01	< 1,66E+02
E+01	< 1,43E+01	2,52E+01	< 1,51E+01	< 1,28E+01	< 8,78E+00	< 1,35E+01	< 1,48E+01	< 1,40E+01	< 1,38E+01	1,75E+02
E+01	< 1,43E+01	< 1,58E+01	6,77E+01	< 1,28E+01	1,49E+01	< 1,35E+01	< 1,48E+01	< 1,40E+01	< 1,38E+01	2,25E+02
E+01	< 1,43E+01	< 1,58E+01	< 1,51E+01	< 1,28E+01	< 8,78E+00	< 1,35E+01	< 1,48E+01	< 1,40E+01	< 1,38E+01	< 1,66E+02
E+02	4,15E+02	3,62E+02	4,67E+02	4,22E+02	2,63E+02	6,47E+02	5,48E+02	7,12E+02	5,26E+02	5,79E+03
E+01	7,15E+00	3,94E+01	6,02E+00	1,41E+02	1,23E+01	< 6,74E-01	< 7,40E-01	5,16E+01	8,31E+00	4,40E+02
E+00	< 1,43E+00	< 1,58E+00	< 1,51E+00	< 1,28E+00	< 8,78E-01	1,89E+00	< 1,48E+00	< 1,40E+00	< 1,38E+00	1,71E+01
E+05	1,52E+05	1,58E+05	1,75E+05	1,44E+05	1,05E+05	1,37E+05	1,84E+05	1,66E+05	1,50E+05	1,79E+06
E+01	1,86E+01	1,89E+01	4,06E+01	1,55E+01	2,90E+01	2,70E+01	8,88E+00	1,81E+01	1,94E+01	2,74E+02
E+01	< 1,43E+01	< 1,58E+01	< 1,51E+01	< 1,28E+01	< 8,78E+00	< 1,35E+01	< 1,48E+01	< 1,40E+01	< 1,38E+01	< 1,66E+02
E+02	< 1,43E+02	< 1,58E+02	< 1,51E+02	< 1,28E+02	< 8,78E+01	< 1,35E+02	< 1,48E+02	< 1,40E+02	< 1,38E+02	< 1,66E+03
E+01	< 1,43E+01	< 1,58E+01	< 1,51E+01	< 1,28E+01	< 8,78E+00	< 1,35E+01	< 1,48E+01	< 1,40E+01	< 1,38E+01	< 1,66E+02
E+00	< 1,43E+00	< 1,58E+00	< 1,51E+00	< 1,28E+00	1,76E+00	< 1,35E+00	< 1,48E+00	< 1,40E+00	< 1,38E+00	1,74E+01

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
7	13335	14576	12898	11612	9395	14143	14363	15086	14660	165552
E+02	6,93E+02	2,62E+02	3,22E+02	1,28E+02	1,88E+02	2,63E+02	2,07E+02	4,00E+02	2,49E+03	5,53E+03
E+00	< 1,33E+00	< 1,46E+00	2,58E+00	2,32E+00	1,50E+00	1,41E+00	< 1,44E+00	2,72E+00	4,10E+00	2,37Ê+01
E+03	1,00E+04	9,04E+03	4,97E+03	2,29E+03	1,13E+03	4,91E+03	6,61E+03	< 6,03E+01	4,98E+03	6,29E+04
E+05	1,33E+05	1,73E+05	2,42E+05	2,58E+05	1,42E+05	1,43E+05	2,41E+05	2,41E+05	2,93E+05	2,51E+06
E+04	1,36E+04	1,75E+04	1,65E+04	2,26E+04	1,19E+04	1,88E+04	1,97E+04	2,19E+04	1,94E+04	2,06E+05
E+03	4,00E+03	6,34E+03	5,61E+03	4,35E+03	2,82E+03	5,37E+03	7,54E+03	6,79E+03	2,20E+03	5,41E+04
E+00	< 1,33E+00	1,60E+00	< 1,29E+00	< 1,16E+00	< 9,40E-01	< 1,41E+00	< 1,44E+00	< 1,51E+00	< 1,47E+00	1,67E+01
E+02	4,00E+02	6,56E+02	3,61E+02	1,86E+02	1,32E+02	1,56E+02	2,53E+02	9,81E+01	< 7,33E+01	2,87E+03
E+03	2,97E+02	1,24E+03	1,48E+03	5,34E+02	8,46E+02	5,49E+02	4,08E+02	1,21E+03	7,18E+02	1,12E+04
E+02	3,60E+02	3,64E+02	3,03E+02	4,64E+02	3,05E+02	6,79E+02	1,08E+03	1,09E+03	5,13E+02	7,21E+03
E+01	< 1,33E+01	< 1,46E+01	< 1,29E+01	< 1,16E+01	< 9,40E+00	< 1,41E+01	1,36E+02	< 1,51E+01	2,20E+01	2,95E+02
E-01	2,67E+00	1,46E+00	7,74E+00	3,48E+00	1,88E+00	5,66E-01	2,87E+00	4,22E+01	9,82E+00	7,63E+01
E+02	9,07E+01	1,31E+02	1,35E+02	1,05E+02	7,89E+01	9,48E+01	1,06E+02	7,54E+01	1,14E+02	1,30E+03
E+00	4,00E+00	< 2,92E+00	< 2,58E+00	< 2,32E+00	2,35E+00	< 2,83E+00	< 2,87E+00	< 3,02E+00	< 2,93E+00	3,49E+01
E+01	< 1,33E+01	< 1,46E+01	< 1,29E+01	< 1,16E+01	< 9,40E+00	< 1,41E+01	< 1,44E+01	< 1,51E+01	< 1,47E+01	< 1,66E+02
E+01	< 1,33E+01	< 1,46E+01	< 1,29E+01	< 1,16E+01	< 9,40E+00	< 1,41E+01	< 1,44E+01	< 1,51E+01	< 1,47E+01	< 1,66E+02
E+01	< 1,33E+01	6,27E+01	1,42E+01	1,39E+01	8,36E+00	9,62E+00	5,75E+00	9,05E+00	< 1,47E+01	1,97E+02
E+01	< 1,33E+01	< 1,46E+01	< 1,29E+01	< 1,16E+01	< 9,40E+00	< 1,41E+01	< 1,44E+01	< 1,51E+01	< 1,47E+01	< 1,66E+02
E+02	1,44E+02	5,10E+02	5,16E+02	2,55E+02	6,86E+02	1,98E+02	2,87E+02	3,62E+02	5,23E+02	4,31E+03
E+01	2,67E+01	2,04E+01	1,03E+01	9,99E+01	1,50E+01	8,49E+00	1,58E+01	9,05E+00	2,04E+02	4,54E+02
E+00	< 1,33E+00	< 1,46E+00	< 1,29E+00	< 1,16E+00	< 9,40E-01	< 1,41E+00	< 1,44E+00	< 1,51E+00	< 1,47E+00	< 1,66E+01
E+04	6,39E+04	9,96E+04	1,18E+05	1,27E+05	7,09E+04	7,44E+04	1,20E+05	1,23E+05	1,35E+05	1,25E+06
E+01	1,20E+01	2,19E+01	1,93E+01	1,51E+01	1,38E+01	3,54E+01	3,16E+01	6,19E+01	3,23E+01	3,29E+02
E+01	< 1,33E+01	< 1,46E+01	< 1,29E+01	< 1,16E+01	< 9,40E+00	< 1,41E+01	< 1,44E+01	< 1,51E+01	< 1,47E+01	< 1,66E+02
E+02	< 1,33E+02	< 1,46E+02	< 1,29E+02	< 1,16E+02	< 9,40E+01	< 1,41E+02	< 1,44E+02	< 1,51E+02	< 1,47E+02	< 1,66E+03
E+01	< 1,33E+01	< 1,46E+01	< 1,29E+01	< 1,16E+01	< 9,40E+00	< 1,41E+01	< 1,44E+01	< 1,51E+01	< 1,47E+01	< 1,66E+02
E+00	< 1,33E+00	< 1,46E+00	< 1,29E+00	< 1,16E+00	< 9,40E-01	< 1,41E+00	< 1,44E+00	< 1,51E+00	< 1,47E+00	< 1,66E+01

5	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
2	13755	15528	14457	14890	11424	15413	16645	15612	13869	177615
E+02	3,16E+02	3,11E+02	3,83E+02	4,62E+02	3,43E+02	2,47E+02	3,00E+02	3,90E+02	3,05E+02	4,05E+03
E+00	1,38E+00	3,11E+00	2,17E+00	1,49E+00	1,49E+00	1,54E+00	< 1,66E+00	< 1,56E+00	1,39E+00	2,04E+01
E+03	2,27E+03	3,11E+03	4,05E+03	2,61E+03	1,18E+03	3,39E+03	4,69E+03	4,68E+03	4,99E+03	4,09E+04
E+05	2,34E+05	3,03E+05	2,23E+05	3,87E+05	2,64E+05	1,91E+05	2,66E+05	1,98E+05	2,50E+05	3,07E+06
E+04	6,41E+03	7,30E+03	7,81E+03	7,74E+03	8,23E+03	1,06E+04	9,42E+03	9,68E+03	9,43E+03	1,20E+05
E+03	2,75E+03	7,76E+02	4,34E+03	4,24E+03	5,14E+03	3,85E+03	4,58E+03	3,59E+03	4,99E+03	4,77E+04
E+01	< 1,11E+02	< 1,55E+00	< 1,45E+00	< 1,49E+00	< 1,14E+00	< 1,54E+00	< 1,66E+00	< 1,56E+00	< 1,39E+00	< 1,43E+02
E+02	2,06E+02	5,43E+02	2,17E+02	1,79E+02	9,71E+01	1,31E+02	1,33E+02	3,90E+01	2,08E+02	2,32E+03
E+03	1,99E+03	3,42E+03	2,75E+03	5,06E+03	2,00E+03	2,77E+03	1,73E+03	1,87E+03	4,30E+03	3,83E+04
E+02	1,65E+02	4,97E+02	5,06E+02	1,94E+02	2,28E+02	1,70E+02	2,16E+02	3,43E+02	3,61E+02	4,33E+03
E+01	1,24E+02	< 1,55E+01	1,59E+01	1,64E+01	6,85E+00	< 1,54E+01	< 1,66E+01	< 1,56E+01	< 1,39E+01	2,86E+02
E+00	2,75E+00	< 1,55E+00	1,45E+01	2,38E+00	2,51E+00	1,85E+00	< 1,66E+00	< 1,56E+00	1,80E+00	3,83E+01
E+02	1,38E+02	< 3,11E+01	1,33E+02	1,13E+02	1,14E+02	1,34E+02	3,16E+02	1,09E+02	1,01E+02	1,67E+03
E+00	< 2,75E+00	< 3,11E+00	< 2,89E+00	< 2,98E+00	< 2,28E+00	< 3,08E+00	< 3,33E+00	4,68E+00	< 2,77E+00	3,88E+01
E+02	< 1,38E+02	< 1,55E+02	< 1,45E+01	< 1,49E+01	< 1,14E+01	< 1,54E+01	4,66E+01	< 1,56E+01	< 1,39E+01	8,85E+02
E+00	< 1,38E+01	< 1,55E+01	1,59E+01	< 1,49E+01	< 1,14E+01	< 1,54E+01	< 1,66E+01	< 1,56E+01	< 1,39E+01	1,56E+02
E+01	3,16E+01	< 3,11E+01	< 2,89E+01	< 2,98E+01	< 2,28E+01	< 3,08E+01	4,99E+01	7,81E+00	2,50E+01	5,72E+02
E+00	< 1,38E+00	< 1,55E+00	< 1,45E+01	< 1,49E+01	< 1,14E+01	< 1,54E+01	< 1,66E+01	< 1,56E+01	< 1,39E+01	< 1,10E+02
E+03	3,71E+02	9,32E+02	< 2,89E+02	6,55E+02	5,14E+02	3,08E+02	6,49E+02	< 3,12E+02	4,58E+02	9,47E+03
E+01	1,65E+01	1,55E+01	1,81E+01	1,64E+01	1,49E+01	1,70E+01	2,83E+01	1,87E+01	1,39E+01	2,08E+02
E+00	< 1,38E+00	< 1,55E+00	< 1,45E+00	< 1,49E+00	< 1,14E+00	< 1,54E+00	3,33E+00	< 1,56E+00	1,39E+00	2,56E+01
E+05	1,07E+05	1,30E+05	1,01E+05	1,64E+05	1,18E+05	9,74E+04	1,27E+05	1,03E+05	1,15E+05	1,43E+06
E+01	4,54E+01	7,76E+01	2,17E+01	7,45E+02	1,37E+01	5,24E+01	5,49E+01	1,41E+01	2,08E+01	1,18E+03
E+01	< 1,38E+01	< 1,55E+01	< 1,45E+01	< 1,49E+01	< 1,14E+01	< 1,54E+01	< 1,66E+01	< 1,56E+01	1,94E+01	1,83E+02
E+02	< 1,38E+02	< 1,55E+02	< 1,45E+02	< 1,49E+02	< 1,14E+02	< 1,54E+02	< 1,66E+02	< 1,56E+02	< 1,39E+02	< 1,78E+03
E+01	< 1,38E+01	< 1,55E+01	< 1,45E+01	< 1,49E+01	< 1,14E+01	< 1,54E+01	< 1,66E+01	< 1,56E+01	1,94E+01	1,83E+02
E+00	< 1,38E+00	< 1,55E+00	< 1,45E+00	< 1,49E+00	< 1,14E+00	< 1,54E+00	< 1,66E+00	< 1,56E+00	< 1,39E+00	< 1,78E+01

5	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
5	10989	13295	12807	9568	7656	12721	12946	11559	15529	144676
E+02	4,62E+02	2,17E+02	2,82E+02	8,90E+01	3,29E+02	4,20E+02	3,62E+02	3,24E+02	3,11E+02	3,58E+03
E+00	1,10E+00	2,26E+00	< 1,28E+00	< 9,57E-01	3,45E+00	1,27E+00	1,81E+00	2,89E+00	< 1,55E+00	1,98E+01
E+03	1,42E+03	2,14E+03	2,33E+03	< 9,57E+00	1,53E+01	1,26E+03	1,44E+03	2,49E+03	2,95E+03	1,97E+04
E+05	1,32E+05	3,60E+05	2,18E+05	1,61E+05	1,60E+05	1,58E+05	1,68E+05	1,20E+05	3,26E+05	2,47E+06
E+03	7,69E+03	6,13E+03	4,97E+03	6,32E+03	3,25E+03	5,52E+03	7,16E+03	7,18E+03	5,28E+03	6,63E+04
E+03	8,79E+02	1,46E+03	2,24E+03	2,75E+03	1,99E+03	2,54E+03	5,31E+03	3,93E+03	4,66E+03	3,57E+04
E+00	< 1,10E+00	7,98E+00	< 1,28E+00	< 9,57E-01	< 7,66E-01	< 1,27E+00	< 1,29E+00	< 1,16E+00	< 1,55E+00	2,11E+01
E+00	1,32E+02	1,99E+02	1,20E+02	9,95E+01	3,83E+01	5,09E+01	2,72E+02	1,27E+02	7,76E+01	1,34E+03
E+04	8,00E+03	4,44E+03	2,75E+03	6,52E+02	1,61E+03	1,27E+03	3,37E+03	1,32E+03	5,51E+03	4,75E+04
E+01	< 5,49E+01	7,98E+01	7,94E+01	2,01E+02	5,74E+01	1,02E+02	8,16E+02	4,16E+02	5,44E+02	2,70E+03
E+02	4,40E+00	1,60E+01	< 7,68E+01	< 5,74E+01	< 4,59E+01	< 7,63E+01	< 7,77E+01	< 1,16E+01	9,32E+01	8,92E+02
E+00	< 5,49E+00	< 6,65E+00	6,40E+00	< 5,74E+00	< 4,59E+00	< 7,63E+00	< 7,77E+00	< 1,16E+00	2,02E+00	6,26E+01
E+02	1,13E+02	1,60E+02	1,28E+02	8,13E+01	1,01E+02	9,92E+01	1,42E+02	1,62E+02	1,48E+02	1,46E+03
E+00	< 5,49E+00	< 6,65E+00	< 7,68E+01	< 5,74E+01	< 4,59E+01	< 7,63E+01	< 7,77E+01	< 2,31E+00	< 3,11E+00	< 3,71E+02
E+01	< 1,10E+01	< 1,33E+01	< 1,28E+02	< 9,57E+01	< 7,66E+01	< 1,27E+02	< 1,29E+02	< 1,16E+02	< 1,55E+02	8,80E+02
E+00	< 5,49E+00	< 6,65E+00	< 7,68E+01	< 5,74E+01	< 4,59E+01	< 7,63E+01	< 7,77E+01	< 1,16E+01	< 1,55E+01	3,95E+02
E+01	6,59E+00	1,46E+01	6,40E+00	< 9,57E+00	1,11E+01	8,90E+00	6,47E+01	6,94E+01	6,21E+00	2,40E+02
E+01	< 1,10E+01	< 1,33E+01	< 1,28E+02	< 9,57E+01	< 7,66E+01	< 1,27E+02	< 1,29E+02	< 1,16E+00	< 1,55E+00	< 6,22E+02
E+02	4,62E+02	6,38E+02	1,04E+03	5,40E+02	7,27E+01	5,47E+02	5,18E+02	2,31E+02	7,92E+02	6,04E+03
E+01	1,21E+01	1,86E+01	1,28E+01	8,61E+00	1,55E+01	1,69E+01	1,81E+01	1,85E+01	1,55E+01	1,72E+02
E+00	< 5,49E+00	< 6,65E+00	< 5,12E-01	< 3,83E-01	1,07E+00	< 5,09E-01	1,81E+00	1,27E+00	< 1,55E+00	3,81E+01
E+05	6,37E+04	1,56E+05	1,61E+05	6,86E+04	6,58E+04	7,00E+04	7,96E+04	5,86E+04	1,17E+05	1,15E+06
E+00	4,40E+00	7,98E+01	< 1,28E+01	4,11E+01	1,45E+01	2,54E+01	1,42E+01	4,97E+01	< 7,76E+00	3,08E+02
E+00	< 1,10E+00	< 1,33E+00	< 2,56E+02	< 1,91E+02	< 1,53E+02	< 2,54E+02	< 2,59E+02	< 1,16E+01	2,64E+01	1,17E+03
E+01	< 5,49E+01	< 6,65E+01	< 3,84E+03	< 2,87E+03	< 2,30E+03	< 3,82E+03	< 3,88E+03	< 1,16E+02	< 1,55E+02	1,72E+04
E+00	< 5,49E+00	< 6,65E+00	< 5,12E+02	< 1,91E+03	< 1,53E+03	< 2,54E+03	< 2,59E+03	< 1,16E+01	< 1,55E+01	9,15E+03
E+00	< 5,49E+00	< 6,65E+00	< 5,12E-01	< 3,83E-01	< 3,06E-01	< 5,09E-01	< 5,18E-01	< 1,16E+00	< 1,55E+00	< 3,47E+01

5	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
6	11987	12224	11062	9686	7353	13649	11875	13034	13916	136116
E+02	2,40E+02	2,57E+02	2,17E+02	1,50E+02	3,24E+02	2,73E+02	4,63E+02	3,52E+02	2,87E+02	3,74E+03
E+00	< 1,20E+00	8,56E+00	5,53E+00	6,78E+00	9,56E-01	< 1,36E+00	< 1,19E+00	< 1,30E+00	< 1,39E+00	3,05E+01
E+03	1,77E+03	2,03E+03	2,67E+03	1,45E+03	5,51E+02	2,10E+03	1,75E+03	2,40E+03	1,18E+02	1,78E+04
E+05	1,40E+05	1,58E+05	1,55E+05	1,69E+05	1,32E+05	1,91E+05	1,51E+05	2,10E+05	1,93E+05	1,80E+06
E+03	6,11E+03	< 4,40E+03	3,82E+03	4,75E+03	235E+03	5,87E+03	2,26E+03	2,74E+03	4,93E+03	5,50E+04
E+03	3,06E+03	2,63E+03	2,32E+03	2,52E+03	3,01E+03	3,75E+03	2,97E+03	2,93E+03	2,85E+03	3,44E+04
E+00	< 1,20E+00	< 1,22E+00	< 1,11E+00	< 9,69E-01	< 7,35E-01	< 1,36E+00	< 1,19E-01	< 1,30E+00	< 1,13E+02	< 1,24E+02
+02,	1,56E+02	1,05E+02	3,21E+02	1,21E+02	1,23E+02	1,68E+02	1,34E+02	1,96E+02	9,05E+01	1,78E+03
E+03	4,44E+03	4,33E+03	6,22E+03	4,55E+03	4,56E+03	6,25E+03	2,91E+03	4,17E+03	2,95E+03	4,98E+04
E+02	1,34E+02	2,87E+02	1,33E+02	1,07E+02	5,74E+01	1,77E+02	2,14E+02	1,56E+02	1,09E+02	1,87E+03
E+00	< 2,40E+00	< 2,32E+01	7,63E+00	1,26E+01	1,32E+01	3,04E+01	1,10E+02	2,18E+02	1,36E+02	5,74E+02
E+00	5,87E+00	7,33E-01	8,85E-01	1,26E+00	3,46E+00	1,36E+00	1,07E+00	5,21E+00	4,17E+00	4,86E+01
E+02	1,10E+02	9,53E+01	6,19E+01	8,72E+01	1,99E+01	1,21E+02	9,50E+01	1,69E+02	1,39E+02	1,29E+03
E+00	< 5,99E+00	< 6,11E+00	< 5,53E+00	< 4,84E+00	< 3,68E+00	< 6,82E+00	< 5,94E+00	< 6,52E+00	< 6,96E+00	< 6,81E+01
E-01	< 1,20E+01	< 2,52E+01	< 1,11E+01	< 9,69E+00	< 7,35E+00	< 1,36E+01	< 1,19E+01	< 1,30E+01	< 1,39E+01	1,29E+02
E+00	< 2,40E+00	< 6,60E+00	< 1,11E+01	< 9,69E+00	< 7,35E+00	2,73E+00	8,31E+00	2,61E+00	1,39E+00	5,60E+01
E+00	2,16E+01	1,16E+01	2,43E+01	3,39E+01	2,65E+01	2,18E+01	4,04E+01	2,61E+01	5,84E+01	3,12E+02
E+01	< 1,20E+01	< 1,22E+01	< 1,11E+01	< 9,69E+00	< 7,35E+00	< 1,36E+01	< 1,19E+01	< 1,30E+01	< 1,39E+01	< 1,67E+02
E+03	1,43E+03	4,14E+02	6,36E+02	8,33E+02	5,13E+02	5,34E+02	3,49E+02	5,60E+02	8,63E+02	9,12E+03
E+00	1,19E+01	8,80E+00	4,20E+00	7,75E+00	1,25E+01	1,21E+01	7,13E+00	1,69E+01	1,67E+01	1,37E+02
E-01	7,19E-01	< 4,89E+00	< 5,53E+00	< 4,84E+00	< 3,68E+00	< 6,82E+00	< 5,94E+00	< 6,52E+00	< 6,96E+00	4,83E+01
E+04	5,74E+04	7,14E+04	7,88E+04	7,12E+04	6,32E+04	8,78E+04	6,91E+04	9,11E+04	9,80E+04	8,29E+05
E+01	5,15E+01	4,40E+01	3,98E+01	2,23E+01	8,82E-01	3,55E+01	3,80E+01	3,13E+01	4,59E+01	3,62E+02
E+00	< 2,40E+00	4,89E+00	< 2,21E+00	< 1,94E+00	< 1,47E+00	2,73E+00	< 2,38E+00	6,52E+00	4,17E+00	3,18E+01
E+01	< 5,99E+01	< 6,11E+01	< 5,53E+01	< 4,84E+01	< 3,68E+01	< 6,82E+01	< 5,94E+01	< 6,52E+01	< 6,96E+01	< 6,81E+02
E-01	< 1,20E+01	< 1,22E+01	< 1,11E+01	3,29E+01	3,31E+00	2,73E+01	1,90E+01	4,69E+01	2,37E+01	2,04E+02
E-01	1,80E+00	8,56E-01	< 4,42E+00	< 3,87E+00	< 2,94E+00	< 5,46E+00	< 4,75E+00	< 5,21E+00	< 5,57E+00	3,65E+01

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
3	14431	12946	17766	14257	8057	8485	10780	11189	8795	149085
E+02	1,52E+02	1,49E+02	1,63E+02	5,13E+02	1,85E+02	1,61E+02	2,70E+02	2,46E+02	1,96E+02	2,72E+03
E+00	4,76E+00	7,77E+00	1,07E+01	4,28E+00	1,05E+00	1,70E+00	1,08E+00	4,48E-01	4,40E-01	4,18E+01
E+03	1,57E+03	1,05E+03	2,03E+03	1,11E+03	6,12E+02	7,04E+02	1,25E+03	1,50E+03	5,28E+02	1,39E+04
E+05	3,67E+05	2,59E+05	3,71E+05	2,65E+05	2,35E+05	1,70E+05	1,22E+05	1,24E+05	7,46E+04	2,72E+06
E+03	5,77E+03	2,33E+03	1,33E+04	7,56E+03	3,14E+03	-	6,05E+03	6,80E+03	2,99E+03	6,17E+04
E+03	3,75E+03	3,37E+03	3,55E+03	3,14E+03	4,43E+03	2,80E+03	3,97E+03	2,52E+03	1,98E+03	4,25E+04
E+00	< 1,44E+00	< 1,29E+00	< 1,78E+00	< 1,43E+00	< 8,06E-01	< 8,49E-01	< 1,08E+00	< 1,12E+00	< 8,80E-01	< 1,49E+01
E+02	1,41E+02	7,77E+01	1,37E+02	1,85E+02	1,29E+02	1,02E+02	1,62E+02	1,25E+02	1,33E+02	1,70E+03
E+03	7,40E+03	9,72E+03	1,36E+04	9,98E+03	7,98E+03	2,29E+03	3,69E+03	4,33E+03	2,92E+03	9,65E+04
E+01	1,59E+02	2,72E+02	1,47E+02	1,18E+02	9,18E+01	1,19E+02	1,62E+02	1,34E+02	1,06E+02	1,65E+03
E+00	1,01E+01	3,24E+00	5,15E+01	< 2,85E+00	2,42E+00	< 1,70E+00	4,96E+00	7,05E+00	4,40E+01	1,58E+02
E-01	2,89E+00	7,77E-01	1,07E+00	4,42E+00	6,04E+00	5,09E+00	3,23E-01	2,24E+00	1,32E+01	4,56E+01
E+01	9,67E+01	9,71E+01	3,38E+01	1,03E+02	1,02E+02	1,06E+02	1,08E+02	1,16E+02	7,92E+01	1,21E+03
E+00	< 7,22E+00	< 6,47E+00	< 8,88E+00	< 7,13E+00	< 4,03E+00	< 4,24E+00	< 5,39E+00	< 5,59E+00	< 4,40E+00	< 6,30E+01
E+01	< 1,15E+01	< 1,04E+01	< 1,42E+01	< 1,14E+01	< 6,45E+00	< 6,79E+00	< 8,62E+00	< 5,59E+00	< 4,40E+00	9,95E+01
E+00	< 2,89E+00	< 2,59E+00	< 3,55E+00	< 2,85E+00	1,61E+00	< 2,55E+00	< 2,16E+00	< 2,24E+00	< 1,76E+00	2,64E+01
E+01	8,08E+01	4,66E+01	1,74E+02	7,84E+01	4,51E+01	1,02E+00	2,48E+01	1,38E+01	1,85E+01	6,73E+02
E+00	< 1,15E+01	< 6,47E+00	< 8,88E+00	< 7,13E+00	< 4,03E+00	< 4,24E+00	< 5,39E+00	< 5,59E+00	< 4,40E+00	< 1,37E+02
E+03	1,05E+03	2,54E+02	5,65E+03	2,57E+03	4,35E+02	3,28E+03	1,49E+03	2,06E+03	6,42E+02	2,55E+04
E+01	1,44E+01	1,29E+01	1,07E+01	1,27E+01	9,35E+00	9,33E+00	1,08E+01,	8,95E+00	1,32E+01	1,54E+02
E+00	< 1,44E+00	< 1,29E+00	2,13E+00	< 1,43E+00	< 8,06E-01	1,36E+00	< 1,08E+00	< 1,12E-01	< 8,80E-01	1,72E+01
E+05	1,52E+05	1,13E+05	1,41E+05	1,15E+05	8,38E+04	6,79E+04	4,94E+04	5,30E+04	3,78E+04	1,13E+06
E+03	6,49E+01	4,53E+01	1,17E+02	2,14E+02	1,61E+02	1,02E+02	2,70E+01	3,69E+01	1,06E+01	9,80E+02
E+01	< 8,66E+00	< 7,77E+00	1,95E+01	< 8,55E+00	< 4,83E+00	< 5,09E+00	< 4,31E+00	< 6,71E+00	< 5,28E+00	8,80E+01
E+01	< 7,22E+01	< 6,47E+01	< 8,88E+01	< 7,13E+01	< 4,03E+01	< 4,24E+01	< 5,39E+01	< 5,59E+01	< 4,40E+01	< 6,10E+02
E+01	< 2,89E+00	< 1,04E+01	< 1,42E+01	< 1,14E+01	< 6,45E+00	< 6,79E+00	< 2,05E+01	< 2,13E+01	< 1,67E+01	1,33E+02
E+00	< 2,89E+00	< 2,59E+00	< 3,55E+00	< 2,85E+00	< 1,61E+00	< 1,70E+00	< 2,16E+00	< 5,59E-01	< 4,40E-01	2,30E+01

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
1	14021	14904	11970	11380	13672	15572	16911	18213	13997	174873
E+02	3,65E+02	5,37E+02	3,95E+02	3,98E+02	5,47E+02	1,87E+02	5,58E+01	5,46E+01	1,36E+03	5,27E+03
E+00	4,35E+00	4,02E+00	4,19E+00	7,97E+00	3,96E+00	2,96E+00	3,72E+00	9,84E+00	2,66E+00	5,93E+01
E+03	1,72E+03	2,03E+03	1,02E+03	8,31E+02	1,37E+03	2,27E+03	1,81E+03	2,04E+03	8,71E+02	1,83E+04
E+05	1,67E+05	2,24E+05	2,35E+05	1,65E+05	2,91E+05	2,38E+05	2,86E+05	3,35E+05	1,93E+05	2,88E+06
	-	-	-	-	-	-	-	-	-	-
E+03	2,75E+03	3,58E+03	2,91E+03	4,65E+03	3,55E+03	3,58E+03	4,58E+03	3,79E+03	3,39E+03	4,56E+04
E+00	< 1,40E+00	< 1,49E+00	< 1,20E+00	< 1,14E+00	< 1,37E+00	< 1,56E+00	< 1,69E+00	< 1,82E+00	< 1,40E+00	< 1,75E+01
E+02	8,13E+01	1,42E+02	1,04E+02	1,14E+02	1,22E+02	1,20E+02	1,57E+02	1,77E+02	2,16E+02	1,70E+03
E+04	1,65E+04	9,00E+03	1,10E+04	2,45E+03	1,34E+04	4,94E+03	2,20E+04	9,12E+03	9,57E+03	1,37E+05
E+02	1,40E+02	2,61E+02	1,22E+02	1,37E+02	2,12E+02	1,87E+02	1,86E+02	1,91E+02	1,40E+02	2,24E+03
E+01	6,17E+00	3,28E+01	1,68E+01	2,28E+00	2,05E+01	7,32E+01	4,23E+01	9,11E+00	< 1,40E+00	2,34E+02
E+00	3,65E+00	< 1,49E+00	< 1,20E+00	7,28E+00	2,73E+00	2,49E+00	5,07E+01	9,11E-01	4,20E+00	8,75E+01
E+02	1,44E+02	6,26E+01	1,21E+02	6,26E+01	1,54E+02	1,64E+02	1,15E+02	2,06E+02	3,08E+02	1,99E+03
E+00	< 1,40E+00	< 1,49E+00	< 1,20E+00	< 1,14E+00	< 1,37E+00	< 1,56E+00	< 1,69E+00	< 1,82E+00	< 1,40E+00	< 1,75E+01
E+00	< 1,40E+00	< 1,49E+00	< 1,20E+00	1,82E+01	< 1,37E+00	< 1,56E+00	6,76E+01	1,18E+02	7,00E+00	2,58E+02
E+00	1,96E+00	5,07E+00	1,44E+00	4,32E+00	< 2,73E+00	< 3,11E+00	< 1,69E+00	< 1,82E+00	8,40E+00	3,66E+01
E+01	7,15E+01	7,75E+01	5,75E+01	7,97E+01	9,57E+00	6,07E+01	1,22E+02	1,31E+02	7,84E+01	9,02E+02
E+00	< 7,01E+00	< 7,45E4,00	< 5,99E+00	< 5,69E+00	< 6,84E+00	< 7,79E+00	< 4,23E+01	< 4,55E+01	< 3,50E+011	< 1,86E+02
E+03	1,60E+03	2,16E+03	1,18E+03	6,68E+02	1,83E+03	1,93E+03	1,07E+03	2,88E+03	1,85E+03	2,02E+04
E+01	1,09E+01	5,81E+00	1,20E+01	2,39E+01	2,05E+01	2,34E+01	2,03E+01	2,19E+01	3,08E+01	2,54E+02
E+00	< 1,40E+00	< 1,49E+00	< 1,20E+00	< 1,14E+00	< 1,37E+00	< 1,56E+00	< 1,69E+00	3,64E+00	< 1,40E+00	1,93E+01
E+05	8,55E+04	1,27E+05	1,05E+05	6,03E+04	1,01E+05	1,05E+05	1,30E+05	1,64E+05	7,75E+04	1,26E+06
E+01	3,22E+01	3,88E+01	3,47E+01	4,10E+01	4,38E+01	2,65E+01	9,13E+01	4,17E+01	7,42E+011	5,15E+02
E+00	1,54E+00	3,58E+00	< 1,20E+00	< 1,14E+00	< 1,37E+00	< 1,56E+00	1,44E+01	6,74E+00	< 1,40E+00	4,57E+01
E+01	< 2,80E+01	< 2,98E+01	< 2,39E+01	< 2,28E+01	< 2,73E+01	< 3,11E+01	< 3,38E+01	3,64E+01	< 2,80E+01	< 3,50E+02
E+01	< 1,40E+01	< 1,49E+01	< 1,20E+01	< 1,14E+01	< 1,37E+01	< 1,56E+01	< 1,69E+01	1,09E+01	< 1,40E+01	1,68E+02
E+00	< 1,40E+00	< 1,49E+00	< 1,20E+00	< 1,14E+00	< 1,37E+00	< 1,56E+00	< 1,69E+00	< 1,82E+00	8,40E+001	2,45E+01

	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
2	14530	12721	14500	15465	10301	14802	17012	17323	15822	170728
E+02	4,50E+02	3,27E+02	2,54E+02	3,96E+02	3,40E+02	4,29E+02	4,59E+02	4,50E+02	4,59E+02	4,45E+03
E+00	4,79E+00	4,58E+00	9,28E+00	8,04E+00	2,88E+00	3,55E+00	7,32E+00	2,43E+00	4,43E+00	6,06E+01
E+03	2,21E+03	1,30E+03	1,99E+03	1,55E+03	1,12E+03	1,10E+03	2,28E+03	2,01E+03	1,71E+03	1,95E+04
E+05	3,36E+05	2,48E+05	2,76E+05	3,37E+05	2,02E+05	2,56E+05	2,89E+05	2,81E+05	2,71E+05	3,29E+06
	-	-	-	-	-	-	-	-	-	-
E+03	4'00E+03	3,12E+03	3,77E+03	1,35E+04	5,12E+03	5,77E+03	5,44E+03	4,99E+03	4,26E+03	6,05E+04
E+00	< 1,45E+00	< 1,27E+00	< 1,45E+00	< 1,55E+00	< 1,03E+00	< 1,48E+00	< 1,70E+00	< 1,73E+00	< 1,58E+00	< 1,71E+01
E+02	2,08E+02	1,02E+02	1,23E+02	9,59E+02	1,32E+02	2,18E+02	2,42E+02	2,51E+02	8,86E+01	2,83E+03
E+04	1,37E+04	1,18E+04	8,96E+03	3,96E+04	1,46E+04	1,69E+04	1,89E+04	1,73E+04	1,39E+04	1,94E+05
E+02	2,25E+02	1,91E+02	3,05E+02	5,01E+03	3,24E+02	3,95E+02	6,97E+02	5,02E+02	5,54E+02	9,11E+03
E+01	2,18E+01	7,63E+00	1,16E+01	3,56E+01	7,42E+00	3,55E+01	<	< 1,73E+00	< 1,58E+00	3,36E+02
E+00	2,47E+00	2,04E+00	8,56E+00	4,02E+00	1,44E+00	4,29E+00	4 705 : 00	< 1,73E+00	< 1,58E+00	4,33E+01
E+02	6,10E+02	2,29E+02	7,05E+02	2,63E+02	1,72E+02	2,58E+02	2,06E+02	2,55E+02	1,74E+02	3,57E+03
E+00	5,81E-01	< 6,36E-01	< 7,25E-01	1,39E+00	7,73E+00	1,48E+00	8,34E+00	< 1,73E+00	< 1,58E+00	2,98E+01
E+01	1,25E+01	< 6,36E+00	5,66E+01	1,30E+01	1,13E+01	3,40E+01	1,24E+01	5,13E+01	7,91E+00	3,01E+02
E+00	2,91E+00	2,54E+00	< 1,45E+00	3,09E+00	< 1,03E+00	<	4,42E+00	5,20E-01	1,58E+00	2,95E+01
E+01	5,88E+01	3,18E+01	9,28E+01	1,48E+02	3,44E+01	6,66E+01	9,70E+01	9,01E+01	1,11E+02	7,84E+02
E+00	<	< 2,54E+00	< 7,25E+00	< 7,73E+00	< 5,15E+00	<	<	< 8,66E+00	< 7,91E+00	< 6,36E+01
E+03	2,47E+03	1,58E+03	1,70E+03	3,48E+03	9,68E+02	3,82E+03	2,72E+03	2,32E+03	1,82E+03	2,75E+04
E+01	2,76E+01	2,54E+01	4,64E+01	2,32E+01	3,50E+01	3,70E+01	3,23E+01	3,81E+01	3,01E+01	4,00E+02
E+00	<	< 1,21E+00	< 1,45E+00	4,64E+00	< 1,03E+00	<	<	< 1,73E+00	< 1,38E+00	1,90E+01
E+05	1,31E+05	9,77E+04	1,21E+05	1,70E+05	8,65E+04	1,26E+05	1,43E+05	1,18E+05	1,08E+05	1,44E+06
E+01	6,83E+01	< 2,29E+01	5,08E+01	1,48E+02,	2,47E+01	9,33E+01	5,44E+01	4,16E+01	7,12E+01	1,31E+00
E+00	2,03E+01	< 2,54E+00	1,16E+01	< 7,73E+00	8,96E+00	2,22E+00	4 705 : 00	< 1,73E+00	< 1,58E+00	8,71E+01
E+01	<	< 2,54E+01	< 2,90E+01	< 3,09E+01	< 2,06E+01	<	<	< 3,46E+01	< 3,16E+01	< 3,41E+02
E+01	1,41E+01	< 1,27E+00	1,32E+01	< 1,55E+00	< 1,03E+01	5 00F 104	4 70 - 04	< 1,73E+01	< 1,58E+01	1,46E+02
	-	-	2,03E+00	< 7,73E-01	< 1,03E-01	< 1,48E-	4 705 . 00	< 1,73E+00	< 1,58E+00	8,07E+00

5	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
0	12078	15056	15390	14614	10805	17052	15927	12768	11578	162825
E+02	4,47E+02	6,02E+02	4,62E+02	4,38E+02	3,57E+02	4,09E+02	4,14E+02	4,09E+02	3,65E+02	4,98E+03
E+00	4,83E+00	4,52E+00	6,16E+00	7,31E+00	1,73E+00	6,82E+00	2,23E+00	5,49E+00	9,26E+00	6,21E+01
E+03	8,21E+02	1,07E+03	9,70E+02	4,53E+02	4,86E+02	9,21E+02	1,58E+03	1,02E+03	5,67E+02	1,26E+04
E+05	2,08E+05	4,19E+05	3,63E+05	4,35E+05	1,34E+05	3,75E+05	3,95E+05	2,73E+05	2,41E+05	3,53E+06
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
E-01	< 1,21E+00	< 1,51E+00	< 1,54E+00	< 1,46E-01	< 1,08E+00	< 1,71E+00	< 1,59E+00	< 1,28E+00	< 1,16E+00	< 1,43E+01
E+02	3,86E+02	2,71E+02	2,62E+02	2,05E+02	2,16E+02	2,90E+02	4,14E+02	3,24E+02	3,17E+02	3,26E+03
E+03	6,39E+03	1,43E+04	1,72E+04	1,51E+04	6,30E+03	1,49E+04	6,71E+03	9,90E+03	1,55E+04	1,33E+05
E+02	1,21E+02	4,10E+02	2,77E+02	2,78E+02	3,24E+02	4,60E+02	5,42E+02	4,28E+02	2,23E+02	3,39E+03
E+00	4,11E+01	1,81E+01	1,23E+02	8,33E+01	9,72E+00	< 5,12E+00	6,37E+00	3,19E+01	4,17E+01	3,83E+02
E+00	3,14E+00	2,71E+00	1,54E+00	2,92E+00	1,08E+00	1,71E+00	1,59E+00	2,55E+01	8,10E-01	4,74E+01
E+02	2,66E+02	1,10E+02	2,14E+02	2,98E+02	1,18E+02	1,48E+02	1,11E+02	1,56E+02	2,64E+02	2,20E+03
E-01	< 2,42E-01	< 3,01E-01	< 3,08E-01	< 5,85E-01	< 2,16E-01	< 5,12E-01	< 6,37E-01	< 1,28E+00	< 4,63E-01	< 5,29E+00
E+01	1,69E+01	1,36E+01	5,93E+01	3,51E+02	1,29E+02	3,92E+02	1,91E+01	1,23E+02	9,26E+01	1,34E+03
E-01	6,04E-01	< 7,53E-01	7,70E-01	1,02E+01	6,48E-01	5,12E-01	< 3,19E+00	< 2,55E+00	< 4,63E-01	2,17E+01
E+01	6,04E+00	1,51E+01	7,70E+00	1,32E+01	4,32E+00	1,02E+01	6,37E+00	3,58E+00	4,28E+00	1,17E+02
E+00	< 1,21E+00	< 1,51E+00	< 1,54E+00	< 2,92E-01	< 1,08E+00	< 1,71E+00	< 3,19E-01	< 1,28E+00	< 2,32E-01	< 1,29E+01
E+03	7,54E+02	1,54E+03	1,36E+03	7,01E+02	5,67E+02	4,06E+03	1,52E+03	1,51E+03	6,15E+02	1,76E+04
E+01	1,21E+02	5,27E+01	7,70E+01	1,02E+02	3,89E+01	6,31E+01	2,55E+01	3,19E+01	6,48E+01	7,96E+02
E-01	< 6,04E-01	< 7,53E-01	< 7,70E-01	< 7,31E-01	< 5,40E-01	< 8,53E-01	< 7,96E-01	< 1,28E+00	< 1,16E+00	< 9,36E+00
E+04	7,91E+04	1,55E+05	1,37E+06	1,70E+05	5,60E+04	1,38E+05	1,49E+05	1,32E+05	9,90E+04	2,64E+06
E+02	1,30E+03	8,88E+02	1,77E+03	1,04E+03	4,21E+02	1,55E+03	1,07E+03	1,02E+03	1,18E+03	1,47E+04
E+00	< 1,21E+00	< 1,51E+00	< 1,54E+00	1,46E+01	8,64E+00	< 8,53E+00	< 7,96E+00	< 2,55E+00	< 5,79E+00	5,98E+01
E+01	< 1,21E+01	< 1,51E+01	< 1,54E+01	< 2,92E+01	< 1,08E+01	< 3,41E+01	< 3,19E+01	< 1,28E+01	< 2,32E+01	< 3,18E+02
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
2	12277	9887	13143	13237	8513	12241	15404	12894	12605	145001
E+03	1,60E+03	2,62E-F02	3,86E+02	2,91E+02	1,70E+02	3,61E+02	1,27E+03	1,83E+03	5,67E+01	9,40E+03
E+00	5,65E+00	8,90E+00	1,31E+01	2,65E+00	1,70E+00	7,34E+00	4,62E+00	5,16E+00	5,04E+00	6,63E+01
E+03	1,72E+03	1,26E+03	2,34E+03	1,19E+03	6,81E+02	1,60E+03	2,11E+03	2,02E+03	2,31E+03	2,14E+04
E+05	1,61E+05	2,53E+05	3,61E+05	2,33E+05	6,73E+04	1,96E+05	2,43E+05	1,16E+05	2,90E+05	2,36E+06
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
E+00	< 1,23E+00	< 9,89E-01	< 1,31E+00	< 1,32E+00	< 8,51E-01	< 1,22E+00	< 1,54E+00	< 1,29E+00	< 1,26E+00	< 1,45E+01
E+02	2,20E+02	1,13E+02	1,93E+02	6,35E+01	2,64E+02	2,35E+02	3,23E+02	4,51E+02	3,78E+01	2,40E+03
E+04	2,64E+04	1,99E+04	2,68E+04	6,13E+03	1,02E+04	1,41E+04	1,36E+04	8,72E+03	1,79E+04	1,89E+05
E+02	8,59E+01	5,81E+01	1,31E+02	4,37E+01	2,38E+01	6,85E+01	6,78E+01	8,12E+01	1,01E+02	9,15E+02
E+01	1,96E+01	5,93E+00	2,37E+01	1,19E+01	1,28E+01	1,10E+01	1,08E+01	6,45E+00	7,56E+00	1,30E+02
E+00	7,37E-01	8,90E-01	2,37E+00	2,65E+00	1,62E+00	1,71E+00	1,31E+01	1,55E+00	2,14E+00	3,41E+01
E+02	2,16E+02	1,17E+02	1,64E+02	1,85E+02	1,53E+02	2,57E+02	3,23E+02	1,81E+02	2,77E+02	2,36E+03
E-01	< 2,46E-01	< 1,98E-01	< 2,63E-01	< 2,65E-01	< 1,70E-01	< 2,45E-01	< 3,08E-01	< 2,58E-01	< 2,52E-01	< 2,79E+00
E+01	1,42E+02	4,45E+01	6,83E+01	5,56E+01	1,70E+01	3,67E+01	2,16E+01	3,74E+01	1,89E+01	5,91E+02
E-01	7,37E-01	6,92E-01	1,05E+00	3,97E-01	3,41E-01	2,45E-01	6,16E-01	6,45E-01	1,26E+00	7,63E+00
E+01	1,60E+01	1,58E+01	2,23E+01	2,25E+01	1,02E+01	3,67E+01	1,23E+01	2,45E+01	3,28E+01	2,35E+02
E+00	< 1,23E+00	< 9,89E-01	< 1,31E+00	< 1,32E+00	< 8,51E-01	< 1,22E+00	< 1,54E+00	< 1,29E+00	< 1,26E+00	< 1,37E+01
E+03	4,85E+03	2,02E+03	4,21E+03	9,69E+03	6,64E+02	1,47E+03	4,93E+03	4,77E+03	1,27E+03	5,22E+04
E+02	6,40E+02	1,97E+02	1,31E+02	1,06E+02	6,81E+01	1,22E+02	6,78E+02	1,81E+02	5,04E+01	1,06E+04
E-01	4,91E-01	< 4,94E-01	< 6,57E-01	< 6,62E-01	< 4,26E-01	< 6,12E-01	< 7,70E-01	< 6,45E-01	< 6,30E-01	6,65E+00
E+05	9,48E+04	9,19E+04	1,26E+05	7,94E+04	4,15E+04	7,49E+04	6,87E+04	8,32E+04	1,23E+05	1,05E+06
E+00	2,58E+00	1,49E+03	1,39E+03	8,87E+02	1,49E+03	2,09E+03	1,26E+03	1,60E+03	1,56E+03	1,36E+04
E+00	6,14E+00	6,92E+00	9,20E+00	7,94E+00	3,41E+00	4,90E+00	7,70E+00	7,74E+00	< 1,26E+00	6,99E+01
E+01	< 6,14E+01	< 4,94E+01	< 6,57E+01	< 6,62E+01	< 4,26E+01	< 6,12E+01	< 7,70E+01	< 6,45E+01	< 6,30E+01	< 6,23E+02
	-	-	-	-	-	-	-	-	-	-
				-	-	-	-	-	-	-

Annexe N° 4

Techniques d'analyses chimiques utilisées par COGEMA La Hague pour les mesures des rejets

Année 2000

Eléments	Technique d'analyse utilisée	Limite de détection en mg/l
Cl ⁻ , NO ₂ ⁻ , Soufre total	Chromatographie ionique à détection conductimétrique	1
F ⁻ , NH ₄ ⁺	Electrode spécifique	F ⁻ : 0,1; NH ₄ ⁺ : 0,5
NO ₃ -	Spectrométrie d'absorption moléculaire puis chromatographie ionique	500
OH.	Titrage potentiométrique	10
Phosphore total	Minéralisation puis complexe phosphomolybdique et spectrométrie d'absorption moléculaire	5
Na	Spectrométrie d'absorption atomique (flamme)	
Al, Ba, Ca, Cd, Cr, Fe, Hg, K, Mn, Ni, Pb, Zn, Zr	Spectrométrie d'émission atomique à source plasma (ICP – AES) puis depuis l'année 2000 : spectrométrie de masse (ICP – MS)	Ni : 0,2 ; Hg : 0,01 Ca, Mg, Al, Fe : 1
N ₂ H ₄	Complexe DMAB et spectrométrie d'absorption moléculaire	0,1
ТВР	HPLC et détection réfractométrique	5
DCO	Oxydation par le bichromate de K et spectro d'absorption moléculaire	1

Annexe N° 5

Reconstitution des bilans annuels de la charge chimique des rejets liquides radioactifs de COGEMA La Hague

Années 1966-74 et 1975-86

masses en tonne par an concentrations en milligramme par litre

	1966	1967	1968	1969	1970	1971	1972	1973	1974
Volume(m³)									
Effluent A	10500	18800	15100	8300	14300	25000	25000	33300	46000
Effluent V	15500	18500	15900	17700	15300	11300	14600	15500	16800
A+V	26000	37300	31000	26000	29600	36300	39600	48800	62800
Al(A)	<u>0,03</u>	<u>0,06</u>	<u>0,05</u>	<u>0,03</u>	<u>0,05</u>	<u>0,08</u>	<u>0,08</u>	<u>0,11</u>	<u>0,15</u>
Ba(A)	0,004	0,008	0,006	0,003	0,006	0,010	0,010	0,013	0,018
Ca(66 à 68 puis A+V)	135	115	210	2,5	0,5	0,6	0,7	0,8	1,0
Cd(A+V)	0,012	0,015	0,013	0,012	0,013	0,014	0,016	0,020	0,025
Cl ⁻ (A+V)	0,8	1,2	1,1	0,8	1,0	1,2	1,3	0,2	0,3
Co(A)	0,011	0,019	0,023	0,025	0,095	0,165	0,165	0,220	0,304
Cr(A)	0,007	<u>0,013</u>	<u>0,011</u>	0,006	<u>0,010</u>	<u>0,017</u>	<u>0,017</u>	0,024	0,032
F ⁻ (A)	0,004	0,008	0;006	0,003	0,006	0,010	0,010	0,013	0,018
Fe(A)	0,07	<u>0,13</u>	<u>0,10</u>	0,06	<u>0,10</u>	0,17	<u>0,17</u>	0,23	<u>0,31</u>
Hg(A+V)	<u>0,026</u>	<u>0,037</u>	<u>0,031</u>	<u>0,026</u>	<u>0,030</u>	<u>0,036</u>	<u>0,040</u>	<u>0,048</u>	<u>0,063</u>
K(A)	0,2	0,4	0,8	1,6	4,7	8,2	8,2	11,0	15,2
Mg(gaines)	9,5	16,3	31,4	27,4	39,6	21,3	41,7	35,40	105,7
Mn(A+V)	<u>0,003</u>	<u>0,004</u>	<u>0,003</u>	<u>0,003</u>	<u>0,003</u>	<u>0,003</u>	<u>0,004</u>	<u>0,005</u>	<u>0,006</u>
Na(A)	-	120	230	400	650	390	690	600	1630
Ni(A)	<u>0,013</u>	<u>0,023</u>	<u>0,018</u>	<u>0,011</u>	<u>0,017</u>	<u>0,030</u>	<u>0,030</u>	<u>0,040</u>	<u>0,055</u>
Pb(A+V)	<u>0,155</u>	<u>0,220</u>	<u>0,190</u>	<u>0,155</u>	<u>0,180</u>	<u>0,220</u>	<u>0,240</u>	<u>0,290</u>	<u>0,380</u>
Uranium(A)	0,2	0,3	0,2	0,1	0,2	0,2	0,3	0,1	0,2
Zn(A+V)	<u>0,03</u>	0,04	<u>0,03</u>	<u>0,03</u>	<u>0,03</u>	<u>0,03</u>	<u>0,04</u>	<u>0,05</u>	<u>0,06</u>
Zr(A+V)	<u>0,003</u>	<u>0,004</u>	0,003	0,003	<u>0,03</u>	<u>0,003</u>	<u>0,004</u>	<u>0,005</u>	<u>0,006</u>
DCO	-	-	-	-	-	-	-	-	-
$N_2H_5^+(A+V)$	<u>0,008</u>	<u>0,011</u>	<u>0,009</u>	<u>0,008</u>	<u>0,009</u>	<u>0,011</u>	<u>0,012</u>	<u>0,010</u>	<u>0,013</u>
NH₄(A 76-89)	0,07	0,10	0,08	0,07	0,09	0,08	0,09	0,13	0,16
NO ₂ (A+V)	3,9	5,6	4,7	3,9	4,4	5,5	5,9	7,3	9,4
NO ₃ (A+V)	380	640	1250	1100	1560	840	1650	1400	4200
OH.									
Phoshore	0,4	0,5	0,4	0,4	0,4	0,5	0,5	0,7	0,9
total(A+V)									·
TBP(A+V)	0,5	0,7	0,6	0,5	0,6	0,7	0,8	1,0	1,3
Soufre total(A)	0,3	0,6	12,0	12,4	26,1	45,4	45,4	60,5	83,7

Les valeurs en rouge et soulignées sont inférieures à la limite de détection

chimique des rejets liquides radioactifs de COGEMA La Hague (années 1975–1986)

1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
56774 27457 84231	49750 32500 82250	57200 28100 85300	50500 40700 91200	55200 54700 106900	55400 56900 112100	49600 42500 92100	77500 47300 124800	69300 52200 121500	66600 63400 130000
0,2	0,20,	0,2	0,2	0,2	0,2	0,2	0,3	0,2	0,2
0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,03
1,4	1,4	1,4	1,5	1,8	1,9	1,5	2,1	2,0	2,2
0,034	0,033	0,035	0,036	0,042	0,046	0,038	0,050	0,0648	0,052
2,7	2,9	2,7	2,9	3,4	3,6	3,6	4,0	3,9	4,2
0,4	0,3	0,4	0,3	0,3	0,4	0,3	0,5	0,5	0,4
0.041	0,035	0,041	0,035	0.041	0.041	0,035	0,054	0.048	0,034
0;02	0,000	0,041	0,000	0,02	0,02	0,02	0,03	0,03	0,03
0,4	0,3	0,4	0,3	0,4	0,4	0,3	0,5	0,5	<u>0,5</u>
0,084	0,082	0,085	0,091	0,106	0,112	0,092	0,124	0,120	0,130
19	16	19	17	17	18	16	26	23	22
59	62	44	42	42	38	19	31	18	13
0,008	0,008	0,008	0,009	0,011	0,011	0,009	0,012	0,012	0,013
980	1080	920	950	700	1000	930	1150	1200	1070
0,067	0,060	0,067	0,060	0,067	0,067	0,060	0,092	0,083	0,079
0,500	0,490	0,510	0,550	0,640	0,670	0,550	0,750	0,730	0,780
0,6	0,6	0,5	0,5	0,5	0,4	0,6	1,4	0,4	0,7
0,08	0,08	0,08	0,09	0,11	0,11	0,09	0,12	0,12	0,13
0,008	0,008	0,009	0,009	0,009	0,011	0,011	0,012	0,012	0,013
-	-	-	-	-	-	-	-	-	-
0,02	0,02	0,03	0,03	0,03	0,03	0,03	0,04	0,04	0,04
11,7	10,2	11,7	10,4	10,7	11,4	10,2	16,0	14,3	14,0
13	12	13	14	16	17	14	19	18	19
2430	2720	2280	2360	1690	2500	2310	2920	3040	2700
1,2	1,1	1,2	1,3	1,5	1,5	1,3	1,7	1,7	1,8
103	90	103	92	95	100	90	141	126	121
1,7	1,6	1,7	1,8	2,1	2,2	1,8	2,5	2,4	2,6

ieures à la limite de détection

Reconstitution des bilans annuels de la charge chimique des rejets liquides radioactifs de COGEMA La Hague (années 1966–1974) (concentrations en mg/l (sauf NO₃))

Années	1966	1967	1968	1969	1970	1971	1972	1973	1974
Volume(m ³)				17					
Effluent A	10500	18800	15100	8300	14300	25000	25000	33300	46000
Effluent V	15500	18500	15900	17700	15300	11300	14600	15500	16800
A+V	26000	37300	31000	26000	29600	36300	39600	48800	62800
Al	3,3	3,3	3,3	3,3	3,3	3,3	3,3	3,3	3,3
Ва	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
Ca	1200	1200	600	300	16,6	16,6	16,6	16,6	16,6
Cd	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	<u>0,4</u>
Cl	32,1	32,1	32,1	32,1	32,1	32,1	32,1	32,1	32,1
Со	1	1	1,5	3	6,6	6,6	6,6	6,6	6,6
Cr	0,7	<u>0,7</u>	<u>0,7</u>	0,7	0,7	0,7	<u>0,7</u>	0,7	<u>0,7</u>
F ⁻	0,4	0,4	0;4	0,4	0,4	0,4	0,4	0,4	0,4
Fe	<u>6,8</u>								
Hg	<u>1</u>								
K	20	20	50	200	329,6	329,6	329,6	329,6	329,6
Mg	365	430	1000	1050	1340	590	1050	720	2000
Mn	<u>0,1</u>								
Na en g/l	-	3,2	7,4	15,4	22,0	10,7	17,4	12,3	26,0
Ni	<u>1,2</u>								
Pb	<u>6</u>								
Uranium	7	8	6,5	3,8	7	6	7,5	2,0	3,0
Zn	<u>1</u>	<u>1-1</u>	<u>1</u>	<u>1</u>	<u>1</u>	1	<u>1</u>	<u>1</u>	1
Zr	<u>0,1</u>								
DCO	-	-	-	-	-	-	-	-	-
$N_2H_5^+$	<u>0,3</u>								
NH ₄	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,6
NO ₂	150	150	150	150	150	150	150	150	150
NO ₃ en g/l	14,6	17,2	40,3	42,3	52,7	23,1	41,7	28,6	66,9
OH.									
P total	13,8	13,8	13,8	13,8	13,8	13,8	13,8	13,8	13,8
Soufre total	30	30	800	1500	2363	2363	2363	2363	2363
TBP	20	20	20	20	20	20	20	20	20

Les valeurs en rouge et soulignées sont inférieures à la limite de détection

narge chimique des rejets liquides radioactifs de COGEMA La Hague (années 1975–1986)

1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
	17								
56774	49750	57200	50500	55200	55400	49600	77500	69300	66600
27457	32500	28100	40700	54700	56900	42500	47300	52200	63400
84231	82250	85300	91200	106900	112100	92100	124800	121500	130000
3,3	3,3	3,3	3,3	<u>3,3</u>	3,3	3,3	<u>3,3</u>	3,3	3,3
0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
16,6	16,6	16,6	16,6	16,6	16,6	16,6	16,6	16,6	16,6
0,4	<u>0,4</u>	<u>0,4</u>	<u>0,4</u>	<u>0,4</u>	<u>0,4</u>	<u>0,4</u>	<u>0,4</u>	<u>0,4</u>	0,4
32	32	32	32	32	32	32	32	32	4,2
6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6
<u>0,7</u>	<u>0,7</u>	<u>0,7</u>	<u>0,7</u>	<u>0,7</u>	<u>0,7</u>	<u>0,7</u>	<u>0,7</u>	<u>0,7</u>	<u>0,7</u>
0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,03
<u>6,8</u>	<u>6,8</u>	<u>6,8</u>	<u>6,8</u>	<u>6,8</u>	<u>6,8</u>	<u>6,8</u>	<u>6,8</u>	<u>6,8</u>	<u>6,8</u>
<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>
329,6	329,6	329,6	329,6	329,6	329,6	329,6	329,6	329,6	329,6
0,7	0,8	0,5	0,5	0,4	0,3	0,2	0,3	0,1	0,1
<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>
11,6	13,1	10,8	10,4	6,5	8,3	10,1	9,2	9,8	8,2
<u>1,2</u>	<u>1,2</u>	<u>1,2</u>	<u>1,2</u>	<u>1,2</u>	<u>1,2</u>	<u>1,2</u>	<u>1,2</u>	<u>1,2</u>	<u>1,2</u>
<u>6</u>	<u>6</u>	<u>6</u>	<u>6</u>	<u>6</u>	<u>6</u>	<u>6</u>	<u>6</u>	<u>6</u>	<u>6</u>
7	7	6	5	5	4	7	11	3	5
<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>
<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>	<u>0,1</u>
-	-	-	-	-	-	-	-	-	-
0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	<u>0,3</u>
206	206	206	206	206	206	206	206	206	206
150	150	150	150	150	150	150	150	150	19
29	33	27	26	16	22	25	23	25	21
14	14	14	14	14	14	14	14	14	14
2363	2363	2363	2363	2363	2363	2363	2363	2363	2363
20	20	20	20	20	20	20	20	20	
t infóriouros à	la limite de déte	oction	1						

t inférieures à la limite de détection

Annexe N° 6

Bilans mensuels et annuels des rejets chimiques des eaux à risque (réseaux 1 et 2) de COGEMA La Hague

Années 2000 à 1989

Masses en kilogramme Concentrations en milligramme par litre

Cette annexe est construite en 5 parties :

Annexe 6₁	Bilan mensuel 1 ^{er} réseau (masses en kg) ordonnés de 2000 à 1989
Annexe 6 ₂	Bilan mensuel 1 ^{er} réseau (concentration en mg/l) ordonnés de 2000 à 1989
Annexe 6 ₃	Bilan mensuel 2 ^{ème} réseau (masse en kg) ordonnés de 2000 à 1989
Annexe 6 ₄	Bilan mensuel 2ème réseau (concentration en mg/l) ordonnés de 2000 à 1989
Annexe 65	Bilan annuel des reiets chimiques des eaux à risques des 2 réseaux

miques sur les eaux à risque (1^{er} réseau) : **Année 2000**

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
5	19345	15100	13113	13434	9931	9032	-	-	-	133804
E+03	6,40E+02	1,09E+03	9,70E+02	1,10E+03	1,19E+03	6,86E+02	-	-	-	9,41E+03
E+00	1,93E+00	< 1,51E+00	< 1,31E+00	2,02E+00	1,39E+00	1,81E+00	-	-	-	1,54E+01
E+01	< 1,93E+01	< 1,51E+0	< 1,31E+01	< 1,34E+01	< 9,93E+00	9,94E+00	-	-	-	1,65E+03
E+02	2,24E+02	2,76E+02	2,88E+02	2,73E+02	3,73E+02	2,04E+02	-	-	-	2,72E+03
	-	-	-	-	-	-	-	-	-	-
E+02	2,51E+02	4,53E+02	2,36E+02	2,28E+02	1,29E+02	1,81E+02	-	-	-	2,53E+03
E+00	< 1,93E+00	< 1,51E+00	< 1,31E+00	< 1,34E+00	< 9,93E-01	< 9,03E-01	-	-	-	< 1,34E+01
E+01	< 9,67E+01	< 7,55E+01	< 6,56E+01	< 6,72E+01	< 4,97E+01	< 4,52E+01	-	-	-	< 6,69E+02
E+02	1,33E+02	2,04E+02	1,77E+02	2,07E+02	2,85E+02	1,94E+02	-	-	-	1,96E+03
È+01	< 1,93E+01	< 1,51E+01	< 1,31E+01	< 1,34E+01	< 9,93E+00	< 9,03E+00	-	-	-	< 1,34E+02
E-01	3,29E+00	4,53E+00	1,31E+00	1,34E+00	1,99E+00	4,52E-01	-	-	-	1,75E+01
E-01	1,32E+00	< 7,55E-01	9,18E-01	6,72E-01	< 4,97E-01	< 4,52E-01	-	-	-	7,66E+00
E+02	5,80E+02	4,53E+02	5,25E+02	5,10E+02	2,98E+02	5,87E+01	-	-	-	4,08E+03
E-01	< 1,93E-01	< 1,51E-01	< 1,31E-01	< 1,34E-01	< 9,93E-02	< 9,03E-02	-	-	-	< 1,34E+00
E-01	< 9,67E-01	< 7,55E-01	< 6,56E-01	< 6,72E-01	< 4,97E-01	< 4,52E-01	-	-	-	< 6,69E+00
E-01	< 9,67E-01	< 7,55E-01	< 6,56E-01	< 6,72E-01	< 4,97E-01	< 4,52E-01	-	-	-	5,91E+00
E-01	2,71E+00	2,42E+00	1,18E+01	1,34E+00	1,99E+00	< 4,52E-01	-	-	-	2,50E+01
E-01	< 9,67E-01	< 7,55E-01	< 6,56E-01	< 6,72E-01	< 4,97E-01	< 4,52E-01	-	-	-	< 6,69E+00
E+01	1,10E+02	9,82E+01	7,87E+01	7,79E+01	4,17E+01	9,03E+00	-	-	-	6,96E+02
E+02	1,39E+02	1,09E+02	1,06E+02	1,12E+02	6,06E+01	1,63E+01	-	-	-	9,37E+02
E-01	5,03E-01	1,51E-01	1,31E-01	2,69E-01	1,99E-01	< 9,03E-02	-	-	-	2,16E+00
E+02	1,04E+03	9,82E+02	7,47E+02	9,00E+02	6,95E+02	5,96E+02	-	-	-	8,26E+03
E+00	< 9,67E+00	< 7,55E+00	< 6,56E+00	< 6,72E+00	6,95E+00	4,52E+00	-	-	-	6,89E+01
E-01	2,94E+00	< 7,55E-01	< 6,56E-01	8,06E-01	9,93E-01	< 4,52E-01	-	-	-	9,29E+00
E+00	< 9,67E+00	< 7,55E+00	< 6,56E+00	< 6,72E+00	< 4,97E+00	< 4,52E+00	-	-	-	< 6,69E+01
E-01	< 9,67E-01	< 7,55E-01	1,31E+00	< 6,72E-01	7,94E-01	< 4,52E-01	-	-	-	8,69E+00
E-02	< 9,67E-02	< 7,55E-02	< 6,56E-02	< 6,72E-02	< 4,97E-02	< 4,52E-02	-	-	-	< 6,69E-01

miques sur les eaux à risque (1^{er} réseau) : **Année 1999**

8	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
4	15392	13917	11724	11016	12595	11817	14172	13079	18061	172943
'	ı	'		'	•	'	'	'	'	
E+03	1,15E+03	1,09E+03	9,97E+02	1,10E+03	8,44E+02	7,09E+02	1,34E+03	9,87E+02	9,90E+02	1,29E+04
E+00	2,31E+00	< 1,39E+00	1,52E+00	1,43E+00	1,26E+00	1,18E+00	1,42E+00	1,83E+00	2,53E+00	2,00E+01
E+01	< 1,54E+01	< 1,39E+01	1,17E+01	2,97E+01	1,26E+01	1,42E+01	< 1,42E+01	< 1,31E+01	< 1,81E+01	1,94E+02
E+02	3,08E+02	3,76E+02	3,52E+02	2,92E+02	2,52E+02	2,07E+02	4,32E+02	3,47E+02	2,26E+02	4,04E+03
	-	-	-	-	-	-	-	-	-	-
E+02	2,31E+02	2,78E+02	4,10E+02	2,75E+02	3,78E+02	2,36E+02	3,54E+02	2,62E+02	1,81E+02	3,37E+03
E+00	< 1,54E+00	< 1,39E+00	< 1,17E+00	< 1,10E+00	< 1,26E+00	< 1,18E+00	< 1,42E+00	< 1,31E+00	< 1,81E+00	< 1,73E+01
E+01	< 7,70E+01	< 6,96E+01	< 5,86E+01	< 5,51E+01	6,93E+01	< 5,91E+01	< 7,09E+01	1,18E+02	< 9,03E+01	9,23E+02
E+02	2,69E+02	2,18E+02	2,34E+02	2,20E+02	2,39E+02	1,60E+02	2,52E+02	1,95E+02	2,06E+02	2,76E+03
E+01	< 1,54E+01	< 1,39E+01	1,88E+01	< 1,10E+01	< 1,26E+01	< 1,18E+01	< 1,42E+01	< 1,31E+01	< 1,81E+01	1,80E+02
E+00	4,00E+00	2,51E+00	1,29E+00	6,61E-01	1,26E+00	< 5,91E-01	< 7,09E-01	< 6,54E-01	1,26E+00	1,93E+01
E+00	1,39E+00	1,25E+00	5,86E-01	5,51E-01	6,30E-01	5,91E-01	5,53E-01	4,45E-01	1,26E+00	9,82E+00
E+02	4,62E+02	4,87E+02	3,87E+02	3,64E+02	3,46E+02	3,19E+02	4,46E+02	4,32E+02	5,96E+02	5,41E+03
E-01	< 1,54E-01	< 1,39E-01	< 1,17E-01	< 1,10E-01	< 1,26E-01	< 1,18E-01	< 1,42E-01	< 1,31E-01	< 1,81E-01	< 1,73E+00
E-01	< 7,70E-01	< 6,96E-01	< 5,86E-01	< 5,51E-01	< 6,30E-01	< 5,91E-01	< 7,09E-01	< 6,54E-01	< 9,03E-01	< 8,65E+00
E-01	< 7,70E-01	< 6,96E-01	< 5,86E-01	< 5,51E-01	< 6,30E-01	< 5,91E-01	< 7,09E-01	< 6,54E-01	< 9,03E-01	< 8,65E+00
E+00	1,39E+00	2,78E+00	1,17E+00	1,10E+00	1,51E+00	8,27E-01	1,98E+00	1,83E+00	2,17E+01	3,97E+01
E-01	< 7,70E-01	< 6,96E-01	< 5,86E-01	< 5,51E-01	< 6,30E-01	< 5,91E-01	< 7,09E-01	< 6,54E-01	< 9,03E-01	< 8,65E+00
E+01	1,11E+02	1,02E+02	9,73E+01	8,04E+01	6,55E+01	7,68E+01	9,07E+01	8,24E+01	2,06E+02	1,22E+03
E+02	1,08E+02	1,21E+02	9,85E+01	1,10E+02	8,31E+01	8,98E+01	1,32E+02	1,19E+02	1,39E+02	1,35E+03
E-01	2,31E-01	5,57E-01	2,34E-01	4,41E-01	5,04E-01	1,18E-01	2,41E-01	1,57E-01	1,81E-01	4,41E+00
E+03	1,08E+03	9,74E+02	1,06E+03	9,91E+02	9,07E+02	9,45E+02	1,01E+03	1,15E+03	1,12E+03	1,21E+04
E+01	9,24E+00	< 6,96E+00	1,01E+01	9,91E+00	6,30E+00	< 5,91E+00	< 7,09E+00	< 6,54E+00	< 9,03E+00	9,92E+01
E-01	< 7,70E-01	< 6,96E-01	< 5,86E-01	2,20E+00	1,26E+00	< 5,91E-01	< 7,09E-01	< 6,54E-01	< 9,03E-01	1,09E+01
E+00	< 7,70E+00	< 6,96E+00	< 5,86E+00	< 5,51E+00	< 6,30E+00	< 5,91E+00	< 7,09E+00	< 6,54E+00	< 9,03E+00	< 8,65E+01
E+00	< 7,70E-01	1,11E+00	9,38E-01	9,91E-01	1,01E+00	5,91E-01	9,92E-01	7,85E-01	1,08E+00	1,14E+01
E-02	< 7,70E-02	< 6,96E-02	< 5,86E-02	< 5,51E-02	< 6,30E-02	< 5,91E-02	< 7,09E-02	< 6,54E-02	< 9,03E-02	< 8,65E-01

\$	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
3	16776	11157	11568	12674	10994	14088	15659	16466	17727	146057
E+03	1,51E+03	1,27E+03	1,04E+03	1,20E+03	7,70E+02	1,27E+03	1,02E+03	1,07E+03	9,75E+02	1,21E+04
E+00	2,68E+00	1,34E+00	2,08E+00	2,03E+00	1,10E+00	< 1,41E+00	1,57E+00	< 1,65E+00	< 1,77E+00	1,87E+01
E+01	< 1,68E+01	1,23E+02	9,25E+00	< 1,27E+01	1,87E+01	< 1,41E+01	< 1,57E+01	< 1,65E+01	< 1,77E+01	2,63E+02
E+02	4,36E+02	2,90E+02	3,47E+02	3,80Et02	1,81E+02	4,93E+02	3,13E+02	2,75E+04	3,19E+02	3,09E+04
	-	-	-	-	-	-	-	-	-	-
E+02	5,03E+02	2,23E+02	3,47E+02	2,53E+02	3,85E+02	4,23E+02	3,13E+02	2,47E+02	3,55E+02	3,85E+03
E+00	< 1,68E+00	< 1,12E+00	< 1,16E+00	< 1,27E+00	< 1,10E+00	< 1,41E+00	< 1,57E+01	< 1,65E+01	< 1,77E+00	< 4,35E+01
E+01	< 8,39E+01	< 5,58E+01	< 5,78E+01	< 6,34E+01	< 5,50E+01	< 7,04E+01	< 7,83E+01	< 8,23E+01	< 8,86E+01	7,41E+02
E+02	2,68E+02	2,23E+02	2,08E+02	2,15E+02	2,31E+02	2,61E+02	2,27E+02	2,47E+02	2,13E+02	2,45E+03
E+01	< 1,68E+01	< 1,12E+01	< 1,16E+01	< 1,27E+01	< 1,10E+01	< 1,41E+01	< 1,57E+01	1,98E+01	< 1,77E+01	1,49E+02
E-01	1,34E+00	< 5,58E-01	2,66E+00	8,87E-01	8,80E-01	1,13E+01	1,41E+00	1,98E+00	< 8,86E-01	2,33E+01
E-01	1,51E+00	5,02E-01	1,16E+00	7,60E-01	5,50E-01	1,13E+00	1,10E+00	8,23E-01	8,86E-01	9,27E+00
E+02	5,37E+02	4,02E+02	4,05E+02	3,30E+02	3,63E+02	4,65E+02	5,01E+02	5,27E+02	5,32E+02	4,72E+03
E-01	< 1,68E-01	< 1,12E-01	2,31E-01	< 1,27E-02	< ,1,10E-01	< 1,41E-01	< 1,57E-01	< 1,65E-01	< 1,77E-01	1,46E+00
E-01	< 8,39E-01	< 5,58E-01	< 5,78E-01	< 6,34E-01	< 5,50E-01	< 7,04E-01	< 7,83E-01	< 8,23E-01	< 8,86E-01	< 7,30E+00
E-01	< 8,39E-01	< 5,58E-01	< 5,78E-01	< 6,34E-01	< 5,50E-01	< 7,04E-01	< 7,83E-01	< 8,23E-01	< 8,86E-01	< 7,30E+00
E+00	3,86E+00	1,45E+00	3,12E+00	7,60E-01	1,98E+01	4,23E+00	2,04E+00	1,81E+00	1,60E+00	4,14E+01
E-01	< 8,39E-01	< 5,58E-01	< 5,78E-01	< 6,34E-01	< 5,50E-01	< 7,04E-01	< 7,83E-01	< 8,23E-01	< 8,86E-01	< 7,30E+00
E+01	1,09E+02	7,81E+01	9,83E+01	7,35E+01	6,05E+01	9,86E+01	9,40E+01	1,60E+02	8,86E+01	1,02E+03
E+02	1,46E+02	1,14E+02	1,27E+02	1,09E+02	9,23E+01	1,27E+02	1,17E+02	1,07E+02	1,03E+02	1,22E+03
E+00	2,85E+00	9,48E-01	1,50E+00	7,60E-01	3,30E+00	9,86E-01	7,83E-01	6,59E-01	5,32E-01	1,49E+01
E+03	1,29E+03	1,09E+03	1,16E+03	1,20E+03	8,80E+02	1,16E+03	1,02E+03	8,97E+03	8,86E+02	1,95E+04
E+00	1,68E+01	6,14E+00	9,72E+00	6,34E+00	7,70E+00	7,04E+00	3,91E+01	< 8,23E+00	< 8,86E+00	1,24E+02
E-01	< 8,39E-01	< 5,58E-01	1,85E+00	< 6,34E-01	6,05E+00	< 7,04E-01	< 7,83E-01	< 8,23E-01	< 8,86E-01	1,41E+01
E+00	< 8,39E+00	< 5,58E+00	< 5,78E+00	< 6,34E+00	< 5,50E+00	< 7,04E+00	< 7,83E+00	< 8,23E+00	< 8,86E+00	< 7,30E+01
E-01	1,51E+00	7,81E-01	1,85E+00	< 6,34E-01	1,10E+00	< 7,04E-01	< 7,83E-01	< 8,23E-01	< 8,86E-01	1,04E+01
E-02	< 8,39E-02	< 5,58E-02	< 5,78E-02	< 6,34E-02	< 5,50E-02	< 7,04E-02	< 7,83E-02	< 8,23E-02	< 8,86E-02	< 7,30E-01

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
5	13664	10180	12350	10996	8117	5358	5618	5718	2654	127656
E+03	1,37E+03	1,09E+03	1,69E+03	1,98E+03	8,93E+02	5,36E+02	2,70E+02	3,77E+02	1,91E+02	1,33E+04
E+00	1,64E+00	< 1,02E+00	< 1,24E+00	< 1,10E+00	8,12E-01	< 5,36E-01	1,07E+00	5,72E-01	2,92E-01	1,63E+01
E+01	1,50E+01	< 1,02E+01	< 1,24E+01	< 1,10E+01	3,57E+01	< 5,36E+00	< 5,62E+00	< 5,72E+00	< 2,65E+00	2,03E+02
E+02	1,37E+02	1,02E+02	3,09E+01	9,90E+01	1,30E+02	2,25E+01	3,99E+01	1,37E+02	4,11E+01	1,72E+03
	-	-	-	-	-	-	-	-	-	-
E+02	2,73E+02	2,04E+02	3,71E+02	2,75E+02	2,44E+02	2,41E+02	2,81E+02	1,72E+02	6,64E+01	2,99E+03
E+00	< 1,37E+00	< 1,02E+00	< 1,24E+00	< 1,10E+00	< 8,12E-01	< 5,36E-01	< 5,62E-01	< 5,72E-01	< 2,65E-01	< 1,28E+01
E+01	< 6,83E+01	< 5,09E+01	8,65E+01	9,02E+01	6,33E+01	5,36E+01	< 2,81E+01	< 2,86E+01	1,38E+01	7,48E+02
E+02	1,91E+02	1,63E+02	1,36E+02	9,46E+01	6,49E+01	5,36E+01	1,18E+02	1,06E+02	4,09E+01	2,11E+03
E+01	< 1,37E+01	< 1,02E+01	< 1,24E+01	< 1,10E+01	< 8,12E+00	< 5,36E+00	< 5,62E+00	< 5,72E+00	< 2,65E+00	1,67E+02
E+00	9,56E-01	5,09E-01	1,24E+00	6,60E-01	< 4,06E-01	< 2,68E-01	< 2,81E-01	6,86E-01	1,99E-01	1,72E+01
E+00	8,20E-01	8,14E-01	1,73E+00	1,32E+00	8,12E-01	5,36E-01	4,21E-01	3,26E-01	1,51E-01	1,01E+01
E+02	4,37E+02	4,53E+02	4,08E+02	2,91E+02	2,31E+02	1,42E+02	1,63E+02	1,85E+02	7,56E+01	4,24E+03
E-01	< 1,37E-01	< 1,02E-01	< 1,24E-01	< 1,10E-01	< 8,12E-02	< 5,36E-02	< 5,62E-02	< 5,72E-02	< 2,65E-02	< 1,28E+00
E-01	< 6,83E-01	< 5,09E-01	< 6,18E-01	< 5,50E-01	< 4,06E-01	< 2,68E-01	< 2,81E-01	< 2,86E-01	< 1,33E-01	< 6,38E+00
E-01	< 6,83E-01	< 5,09E-01	< 6,18E-01	< 5,50E-01	< 4,06E-01	< 2,68E-01	< 2,81E-01	< 2,86E-01	< 1,33E-01	< 6,38E+00
E+00	1,78E+00	< 5,09E-01	9,88E-01	7,70E-01	4,06E-01	3,21E-01	< 2,81E-01	5,15E-01	2,12E-01	1,92E+02
E-01	< 6,83E-01	< 5,09E-01	< 6,18E-01	< 5,50E-01	< 4,06E-01	< 2,68E-01	< 2,81E-01	< 2,86E-01	< 1,33E-01	< 6,38E+00
E+02	1,37E+02	1,27E+02	1,36E+02	9,35E+01	7,31E+01	4,02E+01	3,93E+01	3,14E+01	1,62E+01	2,85E+03
E+02	1,39E+02	1,07E+02	1,24E+02	9,90E+01	7,55E+01	4,82E+01	3,71E+01	4,06E+01	1,78E+01	1,07E+03
E-01	< 9,56E-02	1,02E-01	2,47E-01	2,20E-01	1,62E-01	2,14E-01	1,12E-01	2,29E-01	2,65E-02	5,04E+00
E+03	1,23E+03	9,87E+02	1,32E+03	1,84E+03	1,08E+03	8,57E+02	5,00E+02	3,26E+02	1,88E+02	1,27E+04
E+01	1,37E+01	7,13E+00	2,84E+01	1,87E+01	4,63E+01	1,77E+01	< 2,81E+00	< 2,86E+00	1,99E+00	1,80E+02
E-01	< 6,83E-01	< 5,09E-01	< 6,18E-01	< 5,50E-01	< 4,06E-01	< 2,68E-01	< 2,81E-01	< 2,86E-01	< 1,33E-01	< 6,38E+00
E+00	< 6,83E+00	< 5,09E+00	< 6,18E+00	< 5,50E+00	< 4,06E+00	< 2,68E+00	< 2,81E+00	< 2,86E+00	< 1,33E+00	< 6,,38E+01
E-01	1,23E+00	< 5,09E-01	6,18E-01	< 5,50E-01	< 4,06E-01	< 2,68E-01	< 2,81E-01	3,43E-01	1,33E-01	6,99E+00
E-02	< 6,83E-02	< 5,09E-02	< 6,18E-02	< 5,50E-02	< 4,06E-02	< 2,68E-02	< 2,81E-02	< 2,86E-02	< 1,33E-02	< 6,38E-01

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
8	9117	9378	10113	7526	9632	9170	12411	19851	22308	154703
E+03	1,19E+03	1,41E+03	6,57E+02	5,34E+02	8,86E+02	1,06E+03	6,83E+02	1,59E+03	1,34E+03	1,27E+04
E+01	1,82E+00	< 9,38E-01	3,03E+00	8,28E-01	1,44E+00	1,83E+00	2,48E+00	1,99E+00	2,23E+00	5,04E+01
E+01	< 9,12E+00	3,19E+01	< 1,01E+01	< 7,53E+00	8,67E+01	3,67E+01	< 1,24E+01	< 1,99E+01	< 2,23E+01	3,84E+02
E+02	6,84E+01	8,91E+01	1,82E+02	1,28E+02	3,40E+03	1,56E+02	1,24E+02	1,99E+02	3,12E+02	5,93E+03
	-	-	-	-	-	-	-	-	-	-
E+02	4,10E+02	2,34E+02	2,02E+02	1,51E+02	2,89E+02	1,83E+02	3,10E+02	3,97E+02	3,35E+02	3,73E+03
E+00	< 9,12E-01	< 9,38E-01	< 1,01E+00	< 7,53E-01	< 9,63E-01	< 9,17E-01	< 1,24E+00	< 1,99E+00	< 2,23E+00	< 1,55E+01
E+01	6,38E+01	6,56E+01	5,66E+01	4,75E+01	< 4,82E+01	5,50E+01	8,69E+01	1,09E+02	6,69E+01	8,26E+02
E+02	1,41E+02	1,89E+02	8,49E+01	1,13E+02	4,53E+02	1,83E+02	8,69E+01	5,56E+02	5,80E+02	3,14E+03
E+01	< 9,12E+00	< 9,38E+00	< 1,01E+01	< 7,53E+00	< 9,63E+00	< 9,17E+00	< 1,24E+01	< 1,99E+01	< 2,23E+01	< 1,55E+02
E-01	< 4,56E-01	< 9,38E+00	< 5,06E-01	7,53E-01	2,89E+00	< 4,59E-01	1,86E+00	1,99E-01	1,12E+00	2,07E+01
E-01	7,29E-01	3,75E-01	8,09E-01	6,77E-01	4,82E-01	7,34E-01	6,21E-01	1,19E+00	1,34E+00	1,01E+01
E+02	3,15E+02	3,19E+02	4,55E+02	3,39E+02	6,16E+02	3,67E+02	3,35E+02	7,54E+02	7,14E+02	5,70E+03
E-01	1,82E-01	< 9,38E-02	< 1,01E-01	< 7,53E-02	< 9,63E-02	< 9,17E-02	< 1,24E-01	< 1,99E-01	< 2,23E-01	1,64E+00
E-01	< 4,56E-01	< 4,69E-01	< 5,06E-01	< 3,76E-01	< 4,82E-01	< 4,59E-01	< 6,21E-01	< 9,93E-01	< 1,12E+00	< 7,74E+00
E-01	< 4,56E-01	< 4,69E-01	< 5,06E-01	< 3,76E-01	< 4,82E-01	1,56E+01	< 6,21E-01	< 9,93E-01	< 1,12E+00	2,29E+01
E-01	1,37E+00	8,44E+00	< 5,06E-01	< 3,76E-01	8,38E+00	3,39E+01	4,72E+00	< 9,93E-01	1,56E+00	6,40E+01
E-01	< 4,56E-01	< 4,69E-01	1,62E+00	8,28E-01	< 4,82E-01	< 4,59E-01	< 6,21E-01	< 9,93E-01	< 1,12E+00	9,30E+00
E+02	1,07E+02	8,91E+01	1,01E+02	7,53E+01	1,35E+02	1,10E+02	1,10E+02	1,59E+02	1,74E+02	1,50E+03
E+02	7,84E+01	1,67E+02	1,24E+02	1,09E+02	1,00E+02	1,10E+02	1,09E+02	1,53E+02	1,70E+02	1,46E+03
E-02	3,65E-01	< 4,69E-02	2,02E+00	3,76E-01	8,67E-01	1,74E+00	4,96E-01	3,97E+00	< 1,12E-01	1,04E+01
E+03	1,50E+03	1,50E+03	1,45E+03	1,23E+03	2,55E+03	1,28E+03	1,37E+03	1,39E+03	1,56E+03	1,86E+04
E+01	8,02E+01	7,13E+01	7,89E+01	9,78E+00	2,22E+01	1,65E+01	1,86E+01	2,98E+01	3,12E+01	5,18E+02
E-01	< 4,56E-01	< 4,69E-01	< 5,06E-01	< 3,76E-01	< 4,82E-01	9,17E+00	< 6,21E-01	< 9,93E-01	< 1,12E+00	1,64E+01
E+00	< 4,56E+00	< 4,69E+00	< 5,06E+00	< 3,76E+00	< 4,82E+00	< 4,59E+00	< 6,21E+00	< 9,93E+00	< 1,12E+01	< 7,74E+01
E-01	< 4,56E-01	< 4,69E-01	< 5,06E-01	< 3,76E-01	4,82E-01	6,42E-01	< 6,21E-01	< 9,93E-01	< 1,12E+00	8,75E+00
E-02	< 4,56E-02	< 4,69E-02	< 5,06E-02	7,53E-02	< 4,42E-02	1,74E-01	< 6,21E-02	< 9,93E-02	< 1,12E-01	1,02E+00

\$	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
5	25427	27862	12750	18640	14534	13374	14153	10432	18791	241221
E+03	3,46E+04	2,06E+04	1,28E+03	1,58E+03	1,13E+03	1,28E+03	1,56E+03	6,62E+02	1,50E+03	7,72E+04
E+00	3,81E+00	< 2,79E+00	1,28E+00	1,86E+00	1,45E+00	1,74E+00	3,96E+00	2,61E+00	3,19E+00	3,20E+01
E+01	< 2,54E+01	2,79E+01	< 1,28E+01	< 1,86E+01	< 1,45E+01	< 1,34E+01	6,51E+01	3,13E+01	7,33E+01	3,68E+02
E+02	1,68E+03	6,97E+02	1,02E+03	4,57E+03	4,07E+02	5,28E+02	1,20E+03	3,03E+02	4,13E+02	1,32E+04
	-	-	-	-	-	-	-	-	-	-
E+02	5,09E+02	6,97E+02	1,28E+02	1,86E+02	1,16E+02	4,01E+02	2,83E+02	3,13E+02	3,76E+02	4,23E+03
E+00	< 2,54E+00	< 2,79E+00	< 1,28E+00	< 1,86E+00	< 1,45E+00	< 1,34E+00	< 1,42E+00	< 1,04E+00	< 1,88E+00	< 2,41E+01
E+02	< 1,27E+02	< 1,39E+02	< 6,38E+01	< 9,32E+01	< 7,27E+01	< 6,69E+01	< 7,08E+01	< 5,22E+01	< 9,40E+01	< 1,21E+03
E+02	1,83E+03	9,75E+02	2,17E+02	2,24E+02	1,85E+02	2,93E+02	1,05E+02	7,30E+01	2,07E+02	5,46E+03
E+02	< 1,27E+02	< 1,39E+02	< 6,38E+01	< 9,32E+01	< 7,27E+01	< 6,69E+01	< 7,08E+01	< 5,22E+01	< 9,40E+01	< 1,21E+03
E+00	2,54E+00	1,95E+00	< 6,38E-01	< 9,32E-01	< 7,27E-01	< 6,69E-01	< 7,08E-01	< 5,22E-01	8,27E+00	3,40E+01
E+00	2,54E+00	3,06E+00	2,17E+00	3,54E+00	2,03E+00	2,14E+00	1,98E+00	1,88E+00	1,69E+00	2,80E+01
E+02	1,23E+03	2,23E+03	6,38E+02	9,32E+02	5,20E+02	5,62E+02	5,76E+02	4,17E+02	5,26E+02	1,02E+04
E-01	1,53E+00	< 2,79E-01	< 1,28E-01	9,32E-01	< 7,27E-01	1,34E-01	< 7,08E-01	< 1,04E-01	< 1,88E-01	5,58E+00
E+00	< 1,27E+00	< 1,39E+00	< 6,38E-01	< 9,32E-01	< 7,27E-01	< 6,69E-01	< 7,08E-01	< 5,22E-01	< 9,40E-01	< 1,21E+01
E+00	< 1,27E+00	< 1,39E+00	< 6,38E-01	< 9,32E-01	< 7,27E-01	< 6,69E-01	1,13E+01	< 5,22E-01	< 9,40E-01	2,27E+01
E+00	2,54E+00	3,34E+00	6,38E-01	1,49E+00	1,16E+00	1,47E+00	1,84E+00	8,35E-01	1,88E+00	1,99E+01
E+00	< 1,27E+00	< 1,39E+00	< 6,38E-01	< 9,32E-01	< 7,27E-01	< 6,69E-01	2,41E+00	< 5,22E-01	< 9,40E-01	1,38E+01
E+02	1,26E+03	1,53E+03	8,67E+01	1,25E+02	1,32E+02	1,74E+02	9,91E+01	9,39E+01	1,33E+02	4,60E+03
E+02	1,37E+03	5,15E+03	1,17E+02	1,86E+02	1,08E+02	1,26E+02	1,29E+02	9,39E+01	1,33E+02	7,96E+03
E-01	< 5,09E-01	1,11E+00	< 6,38E-02	3,73E-01	2,91E-01	5,35E-01	< 2,83E-01	6,26E-02	3,19E-01	5,60E+00
E+03	1,50E+04	2,09E+04	7,27E+02	1,06E+03	8,14E+02	1,32E+03	1,34E+03	1,15E+03	1,17E+03	4,71E+04
E+01	< 1,27E+01	1,39E+01	8,93E+00	1,12E+01	1,22E+01	3,08E+01	5,66E+01	8,76E+01	7,52E+01	3,66E+02
E+00	< 1,27E+00	< 1,39E+00	< 6,38E-01	< 9,32E-01	< 7,27E-01	< 6,69E-01	< 7,08E-01	< 5,22E-01	< 9,40E-01	1,42E+01
E+01	3,81E+01	< 1,39E+01	< 6,38E+00	< 9,32E+00	< 7,27E+00	< 6,69E+00	< 7,08E+00	< 5,22E+00	< 9,40E+00	1,46E+02
E+00	2,29E+00	< 1,39E+00	< 6,38E-01	< 9,32E-01	< 7,27E-01	< 6,69E-01	< 7,08E-01	7,30E-01	1,32E+00	1,40E+01
E-01	< 1,27E-01	< 1,39E-01	< 6,38E-02	1,68E-01	< 7,27E-02	< 6,69E-01	< 7,08E-02	< 5,22E-02	5,64E-01	2,35E+00

	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
4	24843	25575	25635	23992	25940	26020	23364	28075	26539	323065
E+03	2,71E+04	2,17E+04	2,72E+04	2,54E+04	4,93E+03	2,86E+03	1,66E+03	1,68E+03	1,46E+03	1,23E+05
E+00	4,22E+00	2,56E+00	3,59E+00	2,64E+00	2,85E+00	2,86E+00	< 2,34E+00	2,81E+00	< 2,65E+00	3,70E+01
E+0	< 2,48E+0	< 2,56E+01	5,13E+02	< 9,60E+01	< 2,59E+01	< 2,60E+01	< 2,34E+01	9,83E+02	3,72E+02	2,47E+03
E+02	7,95E+02	1,53E+03	9,74E+02	4,32E+03	7,00E+02	7,29E+02	7,71E+02	9,83E+02	7,96E+02	1,42E+04
	-	-	-	-	-	-	-	-	-	-
E+02	1,49E+03	2,56E+02	1,03E+03	4,80E+02	2,59E+02	< 1,30E+02	2,34E+02	2,81E+02	2,65E+02	5,48E+03
E+01	< 2,48E+00	< 2,56E+00	< 2,56E+00	< 2,40E+00	< 2,59E+00	< 2,60E+00	< 2,34E+00	< 2,81E+01	< 2,65E+00	< 8,11E+01
E+01	1,24E+01	< 1,28E+01	< 1,28E+01	< 1,20E+01	< 1,30E+02	< 1,30E+02	< 1,17E+02	< 1,40E+02	< 1,33E+02	7,54E+02
E+02	1,39E+03	1,28E+03	1,54E+03	1,37E+03	4,15E+02	3,38E+02	2,57E+02	4,21E+02	2,65E+02	8,58E+03
E+02	< 1,24E+02	< 1,28E+02	< 1,28E+02	< 1,20E+02	< 1,30E+02	< 1,30E+02	< 1,17E+02	< 1,40E+02	< 1,33E+02	< 1,62E+03
E+00	< 1,24E+00	< 1,28E+00	< 5,13E+00	< 4,80E+00	< 5,19E+00	< 5,20E+00	< 4,67E+00	< 5,62E+00	5,31E+00	4,34E+01
E+00	4,47E+00	7,67E+00	2,56E+00	3,36E+00	3,37E+00	4,42E+00	9,35E-01	2,25E+00	1,86E+00	3,91E+01
E+03	1,61E+03	1,28E+03	1,47E+03	1,27E+03	7,78E+02	9,89E+02	8,41E+02	8,98E+02	7,96E+02	1,37E+04
E-01	< 2,48E-01	< 2,56E-01	< 2,56E-01	< 2,40E-01	< 2,59E-01	5,20E-01	< 2,34E-01	< 2,81E-01	< 2,65E-01	4,51E+00
E+01	< 1,24E+01	< 1,28E+01	< 1,28E+00	< 1,20E+00	< 1,30E+00	< 1,30E+00	< 1,17E+00	< 1,40E+00	< 1,33E+00	< 8,07E+01
E+00	< 1,24E+00	< 1,28E+00	< 1,28E+00	< 1,20E+00	< 1,30E+00	5,20E+00	< 1,17E+00	< 1,40E+00	< 1,33E+00	2,04E+01
E+00	2,48E+00	< 2,56E+00	< 2,56E+00	< 2,40E+00	< 2,59E+00	1,04E+01	< 1,17E+00	< 1,40E+00	2,65E+00	5,23E+01
E+00	< 1,24E-01	< 1,28E-01	< 1,28E+00	< 1,20E+00	< 1,30E+00	< 1,30E+00	< 1,17E+00	< 1,40E+00	< 1,33E+00	< 1,39E+01
E+02	7,45E+02	7,67E+02	1,03E+03	9,84E+02	2,85E+02	2,08E+02	1,59E+02	2,25E+02	1,49E+02	5,70E+03
E+02	1,61E+03	9,46E+02	9,74E+02	1,03E+03	3,11E+02	2,50E+02	1,57E+02	1,68E+02	1,41E+02	6,46E+03
E-01	7,45E-01	< 1,28E-01	< 1,28E-01	4,80E-01	2,59E-01	1,56E+00	2,34E-01	< 5,62E-01	7,96E-01	6,75E+00
E+03	1,61E+04	1,15E+04	1,54E+04	1,48E+04	3,11E+03	1,95E+03	1,17E+03	1,40E+03	1,06E+03	7,21E+04
E+01	4,97E+01	< 1,15E+01	< 1,15E+01	9,60E+01	1,30E+01	< 1,30E+01	1,64E+01	1,68E+01	2,65E+01	3,29E+02
E+00	< 1,24E+00	< 1,28E+00	< 1,28E+00	< 1,20E+00	< 1,30E+00	2,60E+00	< 1,17E+00	< 1,40E+00	2,65E+00	1,88E+01
E+01	< 1,24E+01	< 1,28E+01	< 1,28E+01	< 1,20E+01	< 1,30E+01	< 1,30E+01	< 1,17E+01	< 1,40E+01	< 1,33E+01	< 1,62E+02
E+00	< 1,24E+00	< 1,28E+00	< 1,28E+00	< 1,20E+00	< 1,30E+00	< 1,30E+00	< 1,17E+00	< 1,40E+00	2,65E+00	1,89E+01
E-01	< 1,24E-01	< 1,28E-01	< 1,28E-01	< 1,20E-01	< 1,30E-01	< 1,30E-01	< 1,17E-01	< 1,40E-01	< 1,33E-01	< 1,62E+00

5	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
3	12236	6925	19138	20567	19716	24303	25729	21104	27148	237587
E+02	9,21E+03	1,40E+03	1,59E+03	1,28E+03	1,01E+03	1,77E+03	1,51E+03	1,58E+03	1,90E+03	1,64E+04
E-01	< 1,22E+00	2,37E+00	< 1,91E+00	< 2,06E+00	< 1,97E+00	2,43E+00	2,57E+00	3,59E+00	< 2,71E+00	2,55E+01
E+01	8,57E+01	2,20E+02	2,11E+02	5,35E+01	6,21E+02	1,07E+03	1,57E+03	3,38E+02	1,36E+03	5,69E+03
E+02	1,20E+04	2,50E+04	3,81E+04	2,39E+04	3,96E+04	1,03E+04	2,19E+03	4,64E+02	7,06E+02	1,53E+05
	-	-	-	-	-	-	-	-	-	-
E+02	3,67E+02	7,62E+02	3,83E+02	2,55E+03	1,68E+03	1,09E+03	7,20E+02	2,32E+02	2,71E+02	9,02E+03
E-01	< 1,22E+00	< 1,69E+00	< 1,91E+00	< 2,06E+00	< 1,97E+00	< 2,43E+00	< 2,57E+00	< 2,11E+00	< 2,71E+00	< 2,38E+01
E+00	< 6,12E+00	7,62E+00	1,22E+01	1,65E+01	< 1,97E+01	< 2,43E+01	< 2,57E+01	< 2,11E+01	2,71E+01	1,88E+02
E+02	7,46E+02	2,37E+02	2,93E+02	2,22E+02	2,01E+02	4,37E+02	3,60E+02	3,38E+02	4,07E+02	4,04E+03
E+01	1,47E+02	1,52E+02	3,10E+02	9,46E+02	6,70E+02	3,65E+02	1,80E+02	< 1,06E+02	< 1,36E+02	3,16E+03
E+00	3,67E+00	< 1,69E+00	< 5,74E+00	< 6,17E+00	< 5,91E+00	< 7,29E+00	< 7,72E+00	< 1,06E+00	3,26E+00	5,28E+01
E+00	< 6,12E+00	< 8,46E+00	1,15E+00	< 6,17E-01	< 5,91E+00	< 7,29E+00	< 7,72E+00	< 1,06E-01	1,63E+00	7,54E+01
E+02	4,04E+02	7,33E+02	6,12E+02	7,08E+02	6,64E+02	9,62E+02	9,01E+02	8,65E+02	1,09E+03	8,66E+03
E-01	< 2,45E-01	< 3,39E-01	< 5,74E+00	< 6,17E+00	< 5,91E+00	< 7,29E+00	< 7,72E+00	< 2,11E-01	< 2,71E-01	< 3,49E+01
E+00	< 1,22E+01	< 1,69E+01	< 9,57E+00	< 1,03E+01	< 9,86E+00	< 1,22E+01	< 1,29E+01	< 1,06E+01	< 1,36E+01	1,19E+02
E+00	< 6,12E+00	< 8,46E+00	< 5,74E+00	< 6,17E+00	< 5,91E+00	< 7,29E+00	< 7,72E+00,	< 1,06E+00	< 1,36E+00	< 5,64E+01
E+00	< 6,12E+00	< 8,46E+00	1,34E+00	< 1,03E+00	1,97E+00	1,22E+00	2,32E+00	3,14E+03	8,14E+00	3,18E+03
E-01	< 6,12E+00	< 8,46E+00	< 9,57E+00	< 1,03E+01	< 9,86E+00	< 1,22E+01	< 1,29E+01	< 1,06E+00	< 1,36E+00	< 7,43E+01
E+02	1,05E+02	1,69E+02	3,44E+02	1,38E+02	2,35E+02	3,89E+02	2,57E+02	2,53E+02	2,99E+02	2,60E+03
E+01	7,95E+01	1,22E+02	9,19E+01	9,67E+01	9,46E+01	1,41E+02	1,54E+02	8,23E+01	2,09E+02	1,35E+03
E-01	< 2,45E-01	< 3,39E-01	< 3,83E-02	< 4,11E-02	2,76E-01	< 1,70E-01	2,57E-01	4,22E-01	< 5,43E-01	3,78E+00
E+02	3,06E+03	1,01E+04	1,84E+04	1,25E+04	1,58E+04	5,10E+03	2,06E+03	1,29E+03	1,47E+03	7,25E+04
E-01	1,71E+01	< 1,69E+01	< 1,91E+01	4,94E+01	2,56E+01	1,34E+01	5,15E+00	6,75E+01	< 1,36E+01	3,75E+02
E-01	< 1,22E+00	< 1,69E+00	< 1,91E+01	< 2,06E+01	< 1,97E+01	< 2,43E+01	< 2,57E+01	< 1,06E+00	1,90E+00	1,17E+02
E-01	< 3,67E+00	< 5,08E+00	< 2,87E+02	< 3,09E+02	< 2,96E+02	< 3,65E+02	< 3,86E+02	< 1,06E+01	< 1,36E+01	< 1,69E+03
E-01	< 1,22E+00	< 1,69E+00	< 3,83E+01	< 2,06E+02	< 1,97E+02	< 2,43E+02	< 2,57E+02	< 1,06E+00	< 1,36E+00	9,54E+02
E-01	< 2,45E-01	< 3,39E-01	< 3,83E-02	< 4,11E-02	< 3,94E-02	< 4,86E-02	< 5,15E-02	< 1,06E-01	< 1,36E-01	< 2,06E+00

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
27588	30318	27474	21940	25801	30702	37606	35463	36126	35580
'	ı	ı	ı	ı	ı	ı	ı	ı	
1,60E+02	1,46E+02	1,44E+02	1,45E+02	1,35E+02	8,60E+01	1,21E+02	1,04E+02	8,90E+01	6,66E+01
1,60E-01	1,40E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	7,00E-01	1,20E-01	1,00E-01	< 1,00E-01
< 1,00E-01	< 1,00E-01	< 1,00E-01	8,00E-01	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	1,00E+00	< 1,00E+00
7,80E+02	3,70E+02	2,97E+02	4,75E+02	3,40E+02	1,45E+02	4,01E+02	5,42E+02	9,00E+01	2,30E+01
-	-	-	-	-	-	-	-	-	-
1,00E+01	2,20E+01	1,20E+01	3,00E+01	1,00E+01	2,70E+01	2,00E+01	2,50E+01	1,50E+01	3,20E+02
< 1,00E-01									
< 2,00E-01	3,00E-01	< 2,00E-01	< 5,00E-01						
2,00E+01	2,00E+01	2,10E+01	1,80E+01	2,20E+01	1,20E+01	3,60E+01	2,00E+01	2,00E+01	1,43E+01
1,00E-01	< 1,00E+00								
7,00E-01	4,00E-02	< 8,00E-01	1,00E-01	1,80E-01	1,70E-01	< 2,00E-01	2,00E-01	< 2,00E-01	< 2,00E-01
1,10E-01	1,50E-01	1,20E-01	8,00E-02	8,00E-02	1,00E-01	2,00E-01	1,20E+00	5,00E-01	2,50E-01
5,43E+01	5,19E+01	5,45E+01	6,12E+01	4,60E+01	3,60E+01	4,54E+01	4,55E+01	4,90E+01	3,52E+01
< 3,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02					
< 5,00E-02	< 5,00E-02	< 9,40E-02	< 5,00E-02	< 5,00E-02	1,00E-01	< 5,00E-02	< 5,00E-02	7,00E-01	< 5,00E-02
< 1,00E-02	< 1,00E-02	< 1,00E-02	< 5,00E-02	5,00E-02					
1,60E-01	1,50E-02	3,50E-02	1,50E-02	3,00E-02	1,20E-01	9,00E-02	< 1,00E-01	7,00E-02	5,00E-02
< 5,00E-02									
2,80E+01	1,55E+01	9,80E+00	1,00E+01	7,70E+00	5,60E+00	1,03E+01	1,09E+01	8,00E+00	7,00E+00
1,62E+01	1,43E+01	1,48E+01	1,44E+01	1,38E+01	9,00E+00	1,18E+01	1,16E+01	8,10E+00	5,60E+00
< 4,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02	3,00E-02	< 2,00E-02	2,60E-02	< 2,00E-02	< 2,00E-02
3,14E+02	2,25E+02	1,66E+02	2,46E+02	1,80E+02	9,20E+01	1,82E+02	2,10E+02	1,28E+02	4,76E+01
2,00E+00	4,20E+00	2,30E+00	1,80E+00	2,60E+00	1,90E-01	1,80E+00	2,30E+00	2,30E+00	2,30E+00
< 1,00E-02	< 1,00E-02	2,00E-02	< 1,00E-02	< 1,00E-02	4,00E-02	< 1,00E-02	< 1,00E-02	2,00E-02	< 1,00E-02
< 3,00E-01									
1,17E+00	< 5,00E-02	2,30E-01	< 5,00E-02	3,00E-01	5,00E-02	1,80E-01	1,40E-01	< 2,00E-02	3,00E-02
< 1,00E-02	5,00E-02	< 1,00E-02	< 2,00E-02						

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
32979	28333	44193	49190	38411	29363	27048	35943	40112	32322
'	ļ	ļ	ı	ļ	ļ	ļ	ļ	ı	
1,47E+02	1,30E+02	1,05E+02	7,35E+01	1,30E+02	1,00E+02	1,30E+02	1,36E+02	1,06E+02	1,25E+02
1,90E-01	1,10E-01	3,00E-01	4,00E-01	2,00E-01	1,30E-01	1,40E-01	1,20E-01	1,10E-01	1,00E-01
3,50E-01	7,40E+00	6,00E-01	8,30E+00	5,00E-01	4,00E-01	5,00E-01	1,10E+00	2,00E-01	1,30E-01
6,10E+02	7,38E+02	6,71E+02	6,50E+02	6,60E+02	3,50E+02	6,10E+02	3,85E+02	4,78E+02	4,07E+02
-	-	-	-	-	-	-	-	-	-
2,50E+01	2,00E+01	6,00E+01	< 5,00E+00	1,00E+01	1,00E+01	1,50E+01	1,20E+01	< 5,00E+00	2,00E+01
< 1,00E-01									
2,20E+00	5,00E-01	4,00E-01	3,90E+00	1,10E+00	8,00E-01	2,00E+00	1,50E-01	< 2,00E-01	< 2,00E-01
3,70E+01	1,64E+01	2,25E+01	1,57E+01	2,50E+01	1,40E+01	1,40E+01	1,90E+01	1,70E+01	1,76E+01
< 1,00E+00	< 2,00E+00	< 1,00E+00							
1,50E-01	2,20E-01	1,70E-01	1,80E-01	9,00E-02	8,00E-02	9,00E-02	1,40E-01	2,50E-01	7,00E-02
1,10E-01	1,30E-01	1,80E-01	1,60E+00	4,80E-01	8,70E-01	1,70E-01	5,00E-01	1,20E-01	2,00E-01
5,44E+01	5,50E+01	6,31E+01	4,93E+01	4,32E+01	3,14E+01	4,07E+01	4,68E+01	4,83E+01	4,50E+01
< 3,00E-02									
< 5,00E-02	< 5,00E-02	1,12E+00	8,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 2,00E-01	< 2,00E-01
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 1,00E-02						
1,00E-01	< 1,00E-01	< 1,00E-01	1,90E+00	2,30E-01	6,00E-02	2,40E+00	6,00E-02	6,00E-02	< 1,00E-02
< 1,00E-02									
2,90E+01	3,30E+00	4,50E+00	2,50E+01	1,98E+01	1,95E+00	2,50E+01	2,26E+01	1,60E+01	1,20E+01
1,30E+01	1,65E+01	1,66E+01	1,55E+01	1,03E+01	6,70E+00	1,26E+01	1,24E+01	1,20E+01	1,32E+01
1,00E-02	1,00E-02	< 1,00E-02	6,00E-02	4,50E-02	< 1,00E-02	3,00E-02	1,50E-02	1,60E-02	1,50E-02
2,61E+02	3,47E+02	3,66E+02	2,56E+02	3,32E+02	1,67E+02	2,79E+02	1,46E+02	1,32E+02	1,90E+02
3,10E+00	4,60E+00	2,70E+00	6,00E+00	5,70E+00	6,00E+00	3,00E+00	3,50E+00	1,15E+00	9,00E-01
< 5,00E-02	< 3,00E-02	< 3,00E-02	< 3,00E-02	2,30E-01	< 3,00E-02				
< 5,00E-02	< 3,00E-01								
2,20E-01	< 4,00E-02	< 4,00E-02	9,00E-02	< 4,00E-02					
< 1,00E-02									

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
21494	17865	17396	17770	15386	15941	17311	24859	29805	26812
ļ	ļ	ļ	ļ	ļ	ļ	ļ	Į.	ļ	
1,05E+02	8,10E+01	1,80E+02	1,51E+02	8,70E+01	1,78E+02	8,90E+01	5,30E+01	5,30E+01	1,08E+02
2,10E-01	1,60E-01	2,20E-01	2,00E-01	1,70E-01	2,30E-01	2,40E-01	3,40E-01	4,60E-01	2,50E-01
3,10E+00	4,00E-01	5,20E-01	1,20E+00	3,70E-01	5,00E-01	1,50E+00	6,00E-01	2,00E-01	6,00E-01
6,80E+01	1,31E+02	9,20E+01	1,77E+02	1,07E+02	3,79E+02	9,41E+02	8,40E+02	9,26E+02	5,45E+02
-	-	-	-	-	-	-	-	-	-
3,50E+01	2,20E+01	3,30E+01	1,80E+01	3,10E+01	3,00E+01	3,00E+01	4,50E+01	3,50E+01	5,40E+01
< 1,00E-01									
2,60E+00	2,40E+00	1,60E+00	2,10E+00	1,90E+00	1,30E+00	1,60E+00	5,20E+00	3,30E+00	1,30E+00
2,10E+01	1,90E+01	1,35E+01	2,80E+01	1,70E+01	1,78E+01	2,70E+01	2,92E+01	2,27E+01	2,52E+01
< 1,00E+00									
2,40E-01	< 1,00E-01	4,30E-01	2,30E-01	3,00E-01	< 5,00E-02	< 5,00E-02	2,70E-01	1,20E-01	< 1,00E-01
1,47E+00	4,60E-01	2,67E+00	4,70E-01	9,30E-01	2,20E+00	1,80E+00	2,60E+00	9,00E-01	3,00E-01
4,87E+01	2,72E+01	3,43E+01	3,31E+01	4,50E+01	4,82E+01	5,52E+01	6,02E+01	5,33E+01	1,59E+02
< 1,00E-02									
2,30E-01	4,30E-01	8,20E-01	1,20E+00	5,70E-01	6,00E-02	6,80E-01	2,10E-01	1,80E-01	4,00E-01
< 1,00E-02	< 1,00E-02	< 1,00E-02	1,00E-02	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-02	< 1,00E-02	2,00E-01
9,00E-02	< 1,00E-01	1,30E-01	3,40E-01	4,90E-01	< 2,00E-02	< 2,00E-02	< 1,00E-01	< 1,00E-01	7,00E-01
< 3,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
1,65E+01	6,70E+00	1,16E+01	1,56E+01	3,78E+01	2,24E+01	2,23E+01	1,65E+01	9,70E+00	1,60E+01
6,56E+00	4,10E+00	4,80E+00	8,10E+00	1,02E+01	1,44E+01	1,57E+01	2,44E+01	2,27E+01	1,92E+01
< 1,00E-01									
1,04E+02	1,46E+02	9,30E+01	2,15E+02	7,30E+01	3,64E+02	3,76E+02	3,98E+02	3,80E+02	1,43E+02
4,80E+00	3,00E+00	3,40E+00	4,90E+00	2,70E+00	2,70E+00	4,00E+00	3,10E+00	2,24E+00	8,30E+00
< 1,00E-01	< 1,00E-01	1,30E-01	2,60E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	1,00E-02	< 1,00E-02	< 1,00E-02
< 5,00E-01	< 5,00E-02	< 5,00E-02	< 5,00E-02						
< 1,00E-02	2,00E-02	< 1,00E-02							
< 1,00E-02	2,00E-02								

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
32844	27915	20088	22608	26681	18125	21770	18617	25502	31879
'	'	ı	'	'	ı	'	ı	'	
8,50E+01	9,30E+01	8,85E+01	9,80E+01	5,32E+01	8,50E+01	1,02E+02	2,03E+02	1,37E+02	1,27E+02
1,20E-01	1,00E-01	1,30E-01	1,40E-01	2,80E-01	1,50E-01	1,80E-01	3,20E-01	1,00E-01	1,00E-01
6,20E-01	7,40E-01	3,80E-01	1,41E+00	3,00E+00	1,20E+00	7,00E-01	6,00E-01	4,60E-01	5,00E-01
1,94E+02	2,15E+02	9,60E+01	2,68E+02	1,05E+03	2,22E+02	3,00E+02	2,93E+02	1,64E+02	2,04E+02
-	-	-	-	-	-	-	-	-	-
2,20E+01	1,00E+01	1,00E+01	2,50E+01	4,88E+01	3,60E+p1	2,50E+01	4,60E+01	2,50E+01	4,00E+01
< 1,00E-01									
3,80E+00	8,70E-01	< 2,00E-01	1,90E+00	3,20E+00	1,90E+00	1,90E+00	1,93E+00	1,28E+00	1,60E+00
1,65E+01	6,20E+00	1,23E+01	3,73E+01	1,80E+01	1,50E+01	2,40E+00	2,63E+01	2,18E+01	1,60E+01
< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	5,70E+00	< 1,00E+00				
1,10E+00	1,75E+00	6,30E-01	7,60E-01	1,00E+00	3,70E-01	2,40E-01	2,00E-01	1,00E-01	1,20E-01
8,00E-01	1,35E+01	4,30E+00	1,12E+00	5,70E-01	2,80E+00	5,90E+00	3,80E-01	7,00E-02	3,20E-01
5,80E+01	7,80E+01	4,14E+01	5,52E+01	4,26E+01	4,20E+01	3,15E+01	4,80E+01	3,80E+01	4,73E+01
< 1,00E-02									
1,40E-01	2,30E-01	5,80E-01	9,00E-02	6,00E-01	2,70E+00	4,00E-01	1,37E+00	3,80E+00	2,21E+00
8,00E-03	< 5,00E-03	1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	1,00E-02	< 1,00E-02	< 1,00E-02
4,00E-02	1,60E-01	7,00E-02	2,70E-01	8,00E-02	4,00E-02	1,30E-01	2,30E-01	< 1,00E-01	< 1,00E-01
< 3,00E-02									
4,15E+01	5,15E+01	1,36E+01	1,89E+01	3,43E+01	1,60E+01	3,35E+01	1,38E+01	1,93E+01	9,90E+00
6,50E+00	5,30E+00	5,40E+00	7,60E+00	1,10E+01	8,40E+00	4,10E+00	1,20E+01	7,80E+00	7,40E+00
< 1,00E-02	< 1,00E-01								
1,45E+02	1,44E+02	9,72E+01	1,93E+02	5,50E+02	1,61E+02	2,43E+02	2,00E+02	1,10E+02	1,20E+02
2,80E+00	4,40E+00	< 1,80E+00	2,30E+00	2,70E+00	2,80E+00	3,30E+00	6,10E+00	2,70E+00	2,10E+00
< 5,00E-02	< 5,00E-02	8,00E-02	< 5,00E-02	< 5,00E-02	2,00E-01	1,40E-01	2,40E-01	< 1,00E-01	1,80E-01
< 3,00E-01	< 5,00E-01								
< 5,00E-02	< 5,00E-02	< 5,00E-02	6,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	6,00E-02	1,00E-02	< 1,00E-02
-	-	-	< 1,00E-02						

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
15545	19345	15100	13113	13434	9931	9032	-	-	-
'	'	ı	ı	!	I	'		I	ı
7,16E+01	3,31E+01	7,20E+01	7,40E+01	8,20E+01	1,20E+02	7,60E+01	-	-	-
< 1,00E-01	1,00E-01	< 1,00E-01	< 1,00E-01	1,50E-01	1,40E-01	2,00E-01	-	-	-
< 1,00E+00	1,10E+00	-	-	-					
1,91E+01	1,16E+01	1,83E+01	2,20E+01	2,03E+01	3,76E+01	2,26E+01	-	-	-
-	-	-	-	-	-	-	-	-	-
2,00E+01	1,30E+01	3,00E+01	1,80E+01	1,70E+01	1,30E+01	2,00E+01	-	-	-
< 1,00E-01	-	-	-						
< 5,00E+00	-	-	-						
1,41E+01	6,90E+00	1,35E+01	1,35E+01	1,54E+01	2,87E+01	2,15E+01	-	-	-
< 1,00E+00	-	-	-						
< 5,00E-02	1,70E-01	3,00E-01	1,00E-01	1,00E-01	2,00E-01	5,00E-02	-	-	-
< 5,00E-02	6,80E-02	< 5,00E-02	7,00E-02	5,00E-02	< 5,00E-02	< 5,00E-02	-	-	-
2,90E+01	3,00E+01	3,00E+01	4,00E+01	3,80E+01	3,00E+01	6,50E+00	-	-	-
< 1,00E-02	-	-	-						
< 5,00E-02	-	-	-						
< 5,00E-02	-	-	-						
< 5,00E-02	1,40E-01	1,60E-01	9,00E-01	1,00E-01	2,00E-01	< 5,00E-02	-	-	-
< 5,00E-02	-	-	-						
5,30E+00	5,70E+00	6,50E+00	6,00E+00	5,80E+00	4,20E+00	1,00E+00	-	-	-
7,00E+00	7,20E+00	7,20E+00	8,10E+00	8,30E+00	6,10E+00	1,80E+00	-	-	-
1,60E-02	2,60E-02	1,00E-02	1,00E-02	2,00E-02	2,00E-02	< 1,00E-02	-	-	-
6,00E+01	5,40E+01	6,50E+01	5,70E+01	6,70E+01	7,00E+01	6,60E+01	-	-	-
< 5,00E-01	7,00E-01	5,00E-01	-	-	-				
< 5,00E-02	1,52E-01	< 5,00E-02	< 5,00E-02	6,00E-02	1,00E-01	< 5,00E-02	-	-	-
< 5,00E-01	-	-	-						
< 5,00E-02	< 5,00E-02	< 5,00E-02	1,00E-01	< 5,00E-02	8,00E-02	< 5,00E-02	-	-	-
< 5,00E-03	-	-	-						

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
17064	15392	13917	11724	11016	12595	11817	14172	13079	18061
'	ļ	Į.	ļ	Į.	ļ	ļ	Į.	ļ	
7,80E+01	7,50E+01	7,80E+01	8,50E+01	1,00E+02	6,70E+01	6,00E+01	9,45E+01	7,55E+01	5,48E+01
< 1,00E-01	1,50E-01	< 1,00E-01	1,30E-01	1,30E-01	1,00E-01	1,00E-01	1,00E-01	1,40E-01	1,40E-01
< 1,00E+00	< 1,00E+00	< 1,00E+00	1,00E+00	2,70E+00	1,00E+00	1,20E+00	< 1,00E+00	4,00E+00	< 1,00E+00
2,40E+01	2,00E+01	2,70E+01	3,00E+01	2,65E+01	2,00E+01	1,75E+01	3,05E+01	2,65E+01	1,25E+01
-	-	-	-	-	-	-	-	-	-
1,50E+01	1,50E+01	2,00E+01	3,50E+01	2,50E+01	3,00E+01	2,00E+01	2,50E+01	2,00E+01	1,00E+01
< 1,00E-01									
< 5,00E+00	5,50E+00	< 5,00E+00	< 5,00E+00	9,00E+00	< 5,00E+00				
1,30E+01	1,75E+01	1,57E+01	2,00E+01	2,00E+01	1,90E+01	1,35E+01	1,78E+01	1,49E+01	1,14E+01
1,00E+00	< 1,00E+00	< 1,00E+00	1,60E+00	< 1,00E+00	4,00E+00				
1,30E-01	2,60E-01	1,80E-01	1,10E-01	6,00E-02	1,00E-01	< 5,00E-02	< 5,00E-02	< 5,00E-02	7,00E-02
7,00E-02	9,00E-02	9,00E-02	5,00E-02	5,00E-02	5,00E-02	5,00E-02	3,90E-02	3,40E-02	7,00E-02
3,00E+01	3,00E+01	3,50E+01	3,30E+01	3,30E+01	2,75E+01	2,70E+01	3,15E+01	3,30E+01	3,30E+01
< 1,00E-02									
< 5,00E-02									
< 5,00E-02									
1,20E-01	9,00E-02	2,00E-01	1,00E-01	1,00E-01	1,20E-01	7,00E-02	1,40E-01	1,40E-01	1,20E+00
< 5,00E-02									
5,50E+00	7,20E+00	7,30E+00	8,30E+00	7,30E+00	5,20E+00	6,50E+00	6,40E+00	6,30E+00	1,14E+01
7,00E+00	7,00E+00	8,70E+00	8,40E+00	1,00E+01	6,60E+00	7,60E+00	9,30E+00	9,10E+00	7,70E+00
2,00E-02	1,50E-02	4,00E-02	2,00E-02	4,00E-02	4,00E-02	1,00E-02	1,70E-02	1,20E-02	1,00E-02
6,20E+01	7,00E+01	7,00E+01	9,00E+01	9,00E+01	7,20E+01	8,00E+01	7,15E+01	8,83E+01	6,18E+01
6,50E-01	6,00E-01	< 5,00E-01	8,60E-01	9,00E-01	5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	2,00E-01	1,00E-01	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02
< 5,00E-01									
7,00E-02	< 5,00E-02	8,00E-02	8,00E-02	9,00E-02	8,00E-02	5,00E-02	7,00E-02	6,00E-02	6,00E-02
< 5,00E-03									

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
11143	16776	11157	11568	12674	10994	14088	15659	16466	17727
	ļ	ļ	ļ	Į.	ļ	ļ	Į.	ļ	
1,10E+02	9,00E+01	1,14E+02	9,00E+01	9,50E+01	7,00E+01	9,00E+01	6,50E+01	6,50E+01	5,50E+01
1,40E-01	1,60E-01	1,20E-01	1,80E-01	1,60E-01	1,00E-01	1,00E-01	1,00E-01	< 1,00E-01	< 1,00E-01
< 1,00E+00	< 1,00E+00	1,10E+01	8,00E-01	< 1,00E+00	1,70E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00
3,20E+01	2,60E+01	2,60E+01	3,00E+01	3,00E+01	1,65E+01	3,50E+01	2,00E+01	1,67E+03	1,80E+01
-	-	-	-	-	-	-	-	-	-
3,50È+01	3,00E+01	2,00E+01	3,00E+01	2,00E+01	3,50E+01	3,00E+01	2,00E+01	1,50E+01	2,00E+01
< 1,00E-01	< 1,00E+00	< 1,00E+00	< 1,00E-01						
6,00E+00	< 5,00E+00								
1,90E+01	1,60E+01	2,00E+01	1,80E+01	1,70E+01	2,10E+01	1,85E+01	1,45E+01	1,50E+01	1,20E+01
< 1,00E+00	1,20E+00	< 1,00E+00							
8,00E-02	8,00E-02	< 5,00E-02	2,30E-01	7,00E-02	8,00E-02	8,00E-01	9,00E-02	1,20E-01	< 5,00E-02
4,00E-02	9,00E-02	4,50E-02	1,00E-01	6,00E-02	5,00E-02	8,00E-02	7,00E-02	5,00E-02	5,00E-02
3,30E+01	3,20E+01	3,60E+01	3,50E+01	2,60E+01	3,30E+01	3,30E+01	3,20E+01	3,20E+01	3,00E+01
< 1,00E-02	< 1,00E-02	< 1,00E-02	2,00E-02	< 1,00E-03	< 1,00E-02				
< 5,00E-02									
< 5,00E-02									
1,60E-01	2,30E-01	1,30E-01	2,70E-01	6,00E-02	1,80E+00	3,00E-01	1,30E-01	1,10E-01	9,00E-02
< 5,00E-02									
8,00E+00	6,50E+00	7,00E+00	8,50E+00	5,80E+00	5,50E+00	7,00E+00	6,00E+00	9,70E+00	5,00E+00
9,30E+00	8,70E+00	1,02E+01	1,10E+01	8,60E+00	8,40E+00	9,00E+00	7,50E+00	6,50E+00	5,80E+00
1,60E-01	1,70E-01	8,50E-02	1,30E-01	6,00E-02	3,00E-01	7,00E-02	5,00E-02	4,00E-02	3,00E-02
9,50E+01	7,70E+01	9,80E+01	1,00E+02	9,50E+01	8,00E+01	8,20E+01	6,50E+01	5,45E+02	5,00E+01
8,00E-01	1,00E+00	5,50E-01	8,40E-01	5,00E-01	7,00E-01	5,00E-01	2,50E+00	< 5,00E-01	< 5,00E-01
< 5,00E-02	< 5,00E-02	< 5,00E-02	1,60E-01	< 5,00E-02	5,50E-01	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02
< 5,00E-01									
7,00E-02	9,00E-02	7,00E-02	1,60E-01	< 5,00E-02	1,00E-01	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02
< 5,00E-03									

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
19595	13664	10180	12350	10996	8117	5358	5618	5718	2654
'	ļ	ļ	ı	ļ	ļ	ı	ļ	ļ	
1,07E+02	1,00E+02	1,07E+02	1,37E+02	1,80E+02	1,10E+02	1,00E+02	4,80E+01	6,60E+01	7,20E+01
1,50E-01	1,20E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	1,00E-01	< 1,00E-01	1,90E-01	1,00E-01	1,10E-01
1,50E+00	1,10E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	4,40E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00
3,20E+01	1,00E+01	1,00E+01	2,50E+00	9,00E+00	1,60E+01	4,20E+00	7,10E+00	2,40E+01	1,55E+01
-	-	-	-	-	-	-	-	-	-
1,50E+01	2,00E+01	2,00E+01	3,00E+01	2,50E+01	3,00E+01	4,50E+01	5,00E+01	3,00E+01	2,50E+01
< 1,00E-01									
< 5,00E+00	< 5,00E+00	< 5,00E+00	7,00E+00	8,20E+00	7,80E+00	1,00E+01	< 5,00E+00	< 5,00E+00	5,20E+00
1,40E+01	1,40E+01	1,60E+01	1,10E+01	8,60E+00	8,00E+00	1,00E+01	2,10E+01	1,85E+01	1,54E+01
3,00E+00	< 1,00E+00								
1,00E-01	7,00E-02	5,00E-02	1,00E-01	6,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	1,20E-01	7,50E-02
6,00E-02	6,00E-02	8,00E-02	1,40E-01	1,20E-01	1,00E-01	1,00E-01	7,50E-02	5,70E-02	5,70E-02
3,50E+01	3,20E+01	4,45E+01	3,30E+01	2,65E+01	2,85E+01	2,65E+01	2,90E+01	3,23E+01	2,85E+01
< 1,00E-02									
< 5,00E-02									
< 5,00E-02									
7,00E-02	1,30E-01	< 5,00E-02	8,00E-02	7,00E-02	5,00E-02	6,00E-02	< 5,00E-02	9,00E-02	8,00E-02
< 5,00E-02									
1,10E+01	1,00E+01	1,25E+01	1,10E+01	8,50E+00	9,00E+00	7,50E+00	7,00E+00	5,50E+00	6,10E+00
9,00E+00	1,02E+01	1,05E+01	1,00E+01	9,00E+00	9,30E+00	9,00E+00	6,60E+00	7,10E+00	6,70E+00
3,00E-02	< 7,00E-03	1,00E-02	2,00E-02	2,00E-02	2,00E-02	4,00E-02	2,00E-02	4,00E-02	1,00E-02
8,00E+01	9,00E+01	9,70E+01	1,07E+02	1,67E+02	1,33E+02	1,60E+02	8,90E+01	5,70E+01	7,10E+01
1,00E+00	1,00E+00	7,00E-01	2,30E+00	1,70E+00	5,70E+00	3,30E+00	< 5,00E-01	< 5,00E-01	7,50E-01
< 5,00E-02									
< 5,00E-01									
< 5,00E-02	9,00E-02	< 5,00E-02	5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	6,00E-02	5,00E-02
< 5,00E-03									

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
12368	9117	9378	10113	7526	9632	9170	12411	19851	22308
'	ı	ı	ı	ı	ı	ı	ı	ı	
1,14E+02	1,30E+02	1,50E+02	6,50E+01	7,10E+01	9,20E+01	1,16E+02	5,50E+01	8,00E+01	6,00E+01
2,20E+00	2,00E-01	< 1,00E-01	3,00E-01	1,10E-01	1,50E-01	2,00E-01	2,00E-01	1,00E-01	1,00E-01
1,00E+00	< 1,00E+00	3,40E+00	< 1,00E+00	< 1,00E+00	9,00E+00	4,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00
3,30E+01	7,50E+00	9,50E+00	1,80E+01	1,70E+01	3,53E+02	1,70E+01	1,00E+01	1,00E+01	1,40E+01
-	-	-	-	-	-	-	-	-	-
3,50E+01	4,50E+01	2,50E+01	2,00E+01	2,00E+01	3,00E+01	2,00E+01	2,50E+01	2,00E+01	1,50E+01
< 1,00E-01									
5,00E+00	7,00E+00	7,00E+00	5,60E+00	6,31E+00	< 5,00E+00	6,00E+00	7,00E+00	5,50E+00	3,00E+00
1,75E+01	1,55E+01	2,02E+01	8,40E+00	1,50E+01	4,70E+01	2,00E+01	7,00E+00	2,80E+01	2,60E+01
< 1,00E+00									
< 5,00E-02	< 5,00E-02	< 1,00E+00	< 5,00E-02	1,00E-01	3,00E-01	< 5,00E-02	1,50E-01	1,00E-02	5,00E-02
7,00E-02	8,00E-02	4,00E-02	8,00E-02	9,00E-02	5,00E-02	8,00E-02	5,00E-02	6,00E-02	6,00E-02
3,70E+01	3,45E+01	3,40E+01	4,50E+01	4,50E+01	6,40E+01	4,00E+01	2,70E+01	3,80E+01	3,20E+01
< 1,00E-02	2,00E-02	< 1,00E-02							
< 5,00E-02									
< 5,00E-02	1,70E+00	< 5,00E-02	< 5,00E-02	< 5,00E-02					
< 5,00E-02	1,50E-01	9,00E-01	< 5,00E-02	< 5,00E-02	8,70E-01	3,70E+00	3,80E-01	< 5,00E-02	7,00E-02
< 5,00E-02	< 5,00E-02	< 5,00E-02	1,60E-01	1,10E-01	< 5,00E-02				
9,90E+00	1,17E+01	9,50E+00	1,00E+01	1,00E+01	1,40E+01	1,20E+01	8,90E+00	8,00E+00	7,80E+00
8,20E+00	8,60E+00	1,78E+01	1,23E+01	1,45E+01	1,04E+01	1,20E+01	8,80E+00	7,70E+00	7,60E+00
< 5,00E-03	4,00E-02	< 5,00E-03	2,00E-01	5,00E-02	9,00E-02	1,90E-01	4,00E-02	2,00E-01	< 5,00E-03
1,14E+02	1,65E+02	1,60E+02	1,43E+02	1,63E+02	2,65E+02	1,40E+02	1,10E+02	7,00E+01	7,00E+01
1,80E+00	8,80E+00	7,60E+00	7,80E+00	1,30E+00	2,30E+00	1,80E+00	1,50E+00	1,50E+00	1,40E+00
< 5,00E-02	1,00E+00	< 5,00E-02	< 5,00E-02	< 5,00E-02					
< 5,00E-01									
< 5,00E-02	5,00E-02	7,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02				
< 5,00E-03	< 5,00E-03	< 5,00E-03	< 5,00E-03	1,00E-02	< 5,00E-03	1,90E-02	< 5,00E-03	< 5,00E-03	< 5,00E-03

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
27465	25427	27862	12750	18640	14534	13374	14153	10432	18791
l	ļ	ļ	ļ	ļ	ļ	ļ	ı	ļ	
3,60E+02	1,36E+03	7,40E+02	1,00E+02	8,50E+01	7,80E+01	9,60E+01	1,10E+02	6,35E+01	8,00E+01
1,30E-01	1,50E-01	< 1,00E-01	1,00E-01	1,00E-01	1,00E-01	1,30E-01	2,80E-01	2,50E-01	1,70E-01
< 1,00E+00	4,60E+00	3,00E+00	3,90E+00						
3,20E+01	6,60E+01	2,50E+01	8,00E+01	2,45E+02	2,80E+01	3,95E+01	8,50E+01	2,90E+01	2,20E+01
-	-	-	-	-	-	-	-	-	-
1,00E+01	2,00E+01	2,50E+01	1,00E+01	1,00E+01	8,00E+00	3,00E+01	2,00E+01	3,00E+01	2,00E+01
< 1,00E-01									
< 5,00E+00									
2,50E+01	7,20E+01	3,50E+01	1,70E+01	1,20E+01	1,27E+01	2,19E+01	7,40E+00	7,00E+00	1,10E+01
< 5,00E+00									
< 2,00E-01	1,00E-01	7,00E-02	< 5,00E-02	4,40E-01					
1,10E-01	1,00E-01	1,10E-01	1,70E-01	1,90E-01	1,40E-01	1,60E-01	1,40E-01	1,80E-01	9,00E-02
3,60E+01	4,85E+01	8,00E+01	5,00E+01	5,00E+01	3,58E+01	4,20E+01	4,07E+01	4,00E+01	2,80E+01
< 1,00E-02	6,00E-02	< 1,00E-02	< 1,00E-02	5,00E-02	< 5,00E-02	1,00E-02	< 5,00E-02	< 1,00E-02	< 1,00E-02
< 5,00E-02									
< 5,00E-02	8,00E-01	< 5,00E-02	< 5,00E-02						
< 5,00E-02	1,00E-01	1,20E-01	5,00E-02	8,00E-02	8,00E-02	1,10E-01	1,30E-01	8,00E-02	1,00E-01
< 5,00E-02	1,70E-01	< 5,00E-02	< 5,00E-02						
1,60E+01	4,94E+01	5,50E+01	6,80E+00	6,70E+00	9,10E+00	1,30E+01	7,00E+00	9,00E+00	7,10E+00
9,80E+00	5,40E+01	1,85E+02	9,20E+00	1,00E+01	7,40E+00	9,40E+00	9,10E+00	9,00E+00	7,10E+00
< 2,00E-02	< 2,00E-02	4,00E-02	< 5,00E-03	2,00E-02	2,00E-02	4,00E-02	< 2,00E-02	6,00E-03	1,70E-02
4,20E+01	5,90E+02	7,50E+02	5,70E+01	5,70E+01	5,60E+01	9,90E+01	9,50E+01	1,10E+02	6,20E+01
< 5,00E-01	< 5,00E-01	5,00E-01	7,00E-01	6,00E-01	8,40E-01	2,30E+00	4,00E+00	8,40E+00	4,00E+00
< 5,00E-02									
< 5,00E-01	1,50E+00	< 5,00E-01							
< 5,00E-02	9,00E-02	< 5,00E-02	7,00E-02	7,00E-02					
< 5,00E-03	< 5,00E-03	< 5,00E-03	< 5,00E-03	9,00E-03	< 5,00E-03	< 5,00E-02	< 5,00E-03	< 5,00E-03	3,00E-02

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
26134	24843	25575	25635	23992	25940	26020	23364	28075	26539
'	ļ	ļ	ļ	Į.	ļ	ļ	ļ	ļ	
1,70E+02	1,09E+03	8,50E+02	1,06E+03	1,06E+03	1,90E+02	1,10E+02	7,10E+01	6,00E+01	5,50E+01
< 1,00E-01	1,70E-01	1,00E-01	1,40E-01	1,10E-01	1,10E-01	1,10E-01	4,00E-01	1,00E-01	< 1,00E-01
< 1,00E+00	< 1,00E+00	< 1,00E+00	2,00E+01	< 4,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	3,50E+01	1,40E+01
3,10E+01	3,20E+01	6,00E+01	3,80E+01	1,80E+02	2,70E+01	2,80E+01	3,30E+01	3,50E+01	3,00E+01
-	-	-	-	-	-	-	-	-	-
1,50E+01	6,00E+01	1,00E+01	4,00E+01	2,00E+01	1,00E+01	< 5,00E+00	1,00E+01	1,00E+01	1,00E+01
< 1,00E+00	< 1,00E-01	< 1,00E-01	< 1,00E-01	4,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E+00	< 1,00E-01
< 5,00E-01	5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E+00				
1,70E+01	5,60E+01	5,00E+01	6,00E+01	5,70E+01	1,60E+01	1,30E+01	1,10E+01	1,50E+01	1,00E+01
< 5,00E+00									
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 2,00E-01	2,00E-01					
1,00E-01	1,80E-01	3,00E-01	1,00E-01	1,40E-01	1,30E-01	1,70E-01	4,00E-02	8,00E-02	7,00E-02
4,00E+01	6,50E+01	5,00E+01	5,75E+01	5,30E+01	3,00E+01	3,80E+01	3,60E+01	3,20E+01	3,00E+01
< 2,00E-02	< 1,00E-02	2,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02				
< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-02						
< 5,00E-02	2,00E-01	< 5,00E-02	< 5,00E-02	< 5,00E-02					
1,00E-01	1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	4,00E-01	< 5,00E-02	< 5,00E-02	1,00E-01
< 5,00E-02	< 5,00E-03	< 5,00E-03	< 5,00E-02						
1,90E+01	3,00E+01	3,00E+01	4,00E+01	4,10E+01	1,10E+01	8,00E+00	6,80E+00	8,00E+00	5,60E+00
1,40E+01	6,50E+01	3,70E+01	3,80E+01	4,30E+01	1,20E+01	9,60E+00	6,70E+00	6,00E+00	5,30E+00
2,00E-02	3,00E-02	< 5,00E-03	< 5,00E-03	2,00E-02	1,00E-02	6,00E-02	1,00E-02	< 2,00E-02	3,00E-02
9,10E+01	6,50E+02	4,50E+02	6,00E+02	6,15E+02	1,20E+02	7,50E+01	5,00E+01	5,00E+01	4,00E+01
1,00E+00	2,00E+00	< 4,50E-01	< 4,50E-01	4,00E+00	5,00E-01	< 5,00E-01	7,00E-01	6,00E-01	1,00E+00
< 5,00E-02	1,00E-01	< 5,00E-02	< 5,00E-02	1,00E-01					
< 5,00E-01									
< 5,00E-02	1,00E-01								
< 5,00E-03									

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
8948	12236	16925	19138	20567	19716	24303	25729	21104	27148
'	ļ	Į.	ļ	ļ	ļ	ļ	Į.	ļ	
3,60E+01	9,90E+01	8,30E+01	8,30E+01	6,22E+01	5,10E+01	7,30E+01	5,85E+01	7,50E+01	7,00E+01
< 1,00E-01	< 1,00E-01	1,40E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	1,00E-01	1,00E-01	1,70E-01	< 1,00E-01
2,00E+00	7,00E+00	1,30E+01	1,10E+01	2,60E+00	3,15E+01	4,40E+01	6,10E+01	1,60E+01	5,00E+01
3,20E+01	9,80E+02	1,48E+03	1,99E+03	1,16E+03	2,01E+03	4,25E+02	8,50E+01	2,20E+01	2,60E+01
-	-	-	-	-	-	-	-	-	-
1,50E+01	3,00E+01	4,50E+01	2,00E+01	1,24E+02	8,50E+01	4,50E+01	2,80E+01	1,10E+01	1,00E+01
< 1,00E-01									
4,00E-01	< 5,00E-01	4,50E-01	6,40E-01	8,00E-01	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	1,00E+00
2,20E+01	6,10E+01	1,40E+01	1,53E+01	1,08E+01	1,02E+01	1,80E+01	1,40E+01	1,60E+01	1,50E+01
< 5,00E+00	1,20E+01	9,00E+00	1,62E+01	4,60E+01	3,40E+01	1,50E+01	7,00E+00	< 5,00E+00	< 5,00E+00
4,00E-01	3,00E-01	< 1,00E-01	< 3,00E-01	< 5,00E-02	1,20E-01				
< 5,00E-01	< 5,00E-01	< 5,00E-01	6,00E-02	< 3,00E-02	< 3,00E-01	< 3,00E-01	< 3,00E-01	< 5,00E-03	6,00E-02
2,74E+01	3,30E+01	4,33E+01	3,20E+01	3,44E+01	3,37E+01	3,96E+01	3,50E+01	4,10E+01	4,03E+01
< 2,00E-02	< 2,00E-02	< 2,00E-02	< 3,00E-01	< 1,00E-02	< 1,00E-02				
< 1,00E+00	< 1,00E+00	< 1,00E+00	< 5,00E-01						
< 5,00E-01	< 5,00E-01	< 5,00E-01	< 3,00E-01	< 5,00E-02	< 5,00E-02				
< 5,00E-01	< 5,00E-01	< 5,00E-01	7,00E-02	< 5,00E-02	1,00E-01	5,00E-02	9,00E-02	1,49E+02	3,00E-01
< 5,00E-02	< 5,00E-01	< 5,00E-02	< 5,00E-02						
1,27E+01	8,60E+00	1,00E+01	1,80E+01	6,70E+00	1,19E+01	1,60E+01	1,00E+01	1,20E+01	1,10E+01
3,40E+00	6,50E+00	7,20E+00	4,80E+00	4,70E+00	4,80E+00	5,80E+00	6,00E+00	3,90E+00	7,70E+00
< 2,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-03	< 2,00E-03	1,40E-02	< 7,00E-03	1,00E-02	2,00E-02	< 2,00E-02
4,90E+01	2,50E+02	5,97E+02	9,60E+02	6,09E+02	8,00E+02	2,10E+02	8,00E+01	6,10E+01	5,43E+01
< 1,00E-01	1,40E+00	< 1,00E+00	< 1,00E+00	2,40E+00	1,30E+00	5,50E-01	2,00E-01	3,20E+00	< 5,00E-01
< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E+00	< 5,00E-02	7,00E-02				
< 1,00E-01	< 3,00E-01	< 3,00E-01	< 1,50E+01	< 5,00E-01	< 5,00E-01				
< 1,00E-01	< 1,00E-01	< 1,00E-01	< 2,00E+00	< 1,00E+01	4,00E+01	< 1,00E+01	< 1,00E+01	< 5,00E-02	< 5,00E-02
< 2,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-03	< 5,00E-03	< 5,00E-03				

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
27588	30318	27474	21940	25801	30702	37606	35463	36126	35580
'	ı	ı	ı	ı	ı	ı	ı	ı	
1,60E+02	1,46E+02	1,44E+02	1,45E+02	1,35E+02	8,60E+01	1,21E+02	1,04E+02	8,90E+01	6,66E+01
1,60E-01	1,40E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	7,00E-01	1,20E-01	1,00E-01	< 1,00E-01
< 1,00E-01	< 1,00E-01	< 1,00E-01	8,00E-01	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	1,00E+00	< 1,00E+00
7,80E+02	3,70E+02	2,97E+02	4,75E+02	3,40E+02	1,45E+02	4,01E+02	5,42E+02	9,00E+01	2,30E+01
-	-	-	-	-	-	-	-	-	-
1,00E+01	2,20E+01	1,20E+01	3,00E+01	1,00E+01	2,70E+01	2,00E+01	2,50E+01	1,50E+01	3,20E+02
< 1,00E-01									
< 2,00E-01	3,00E-01	< 2,00E-01	< 5,00E-01						
2,00E+01	2,00E+01	2,10E+01	1,80E+01	2,20E+01	1,20E+01	3,60E+01	2,00E+01	2,00E+01	1,43E+01
1,00E-01	< 1,00E+00								
7,00E-01	4,00E-02	< 8,00E-01	1,00E-01	1,80E-01	1,70E-01	< 2,00E-01	2,00E-01	< 2,00E-01	< 2,00E-01
1,10E-01	1,50E-01	1,20E-01	8,00E-02	8,00E-02	1,00E-01	2,00E-01	1,20E+00	5,00E-01	2,50E-01
5,43E+01	5,19E+01	5,45E+01	6,12E+01	4,60E+01	3,60E+01	4,54E+01	4,55E+01	4,90E+01	3,52E+01
< 3,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02					
< 5,00E-02	< 5,00E-02	< 9,40E-02	< 5,00E-02	< 5,00E-02	1,00E-01	< 5,00E-02	< 5,00E-02	7,00E-01	< 5,00E-02
< 1,00E-02	< 1,00E-02	< 1,00E-02	< 5,00E-02	5,00E-02					
1,60E-01	1,50E-02	3,50E-02	1,50E-02	3,00E-02	1,20E-01	9,00E-02	< 1,00E-01	7,00E-02	5,00E-02
< 5,00E-02									
2,80E+01	1,55E+01	9,80E+00	1,00E+01	7,70E+00	5,60E+00	1,03E+01	1,09E+01	8,00E+00	7,00E+00
1,62E+01	1,43E+01	1,48E+01	1,44E+01	1,38E+01	9,00E+00	1,18E+01	1,16E+01	8,10E+00	5,60E+00
< 4,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02	3,00E-02	< 2,00E-02	2,60E-02	< 2,00E-02	< 2,00E-02
3,14E+02	2,25E+02	1,66E+02	2,46E+02	1,80E+02	9,20E+01	1,82E+02	2,10E+02	1,28E+02	4,76E+01
2,00E+00	4,20E+00	2,30E+00	1,80E+00	2,60E+00	1,90E-01	1,80E+00	2,30E+00	2,30E+00	2,30E+00
< 1,00E-02	< 1,00E-02	2,00E-02	< 1,00E-02	< 1,00E-02	4,00E-02	< 1,00E-02	< 1,00E-02	2,00E-02	< 1,00E-02
< 3,00E-01									
1,17E+00	< 5,00E-02	2,30E-01	< 5,00E-02	3,00E-01	5,00E-02	1,80E-01	1,40E-01	< 2,00E-02	3,00E-02
< 1,00E-02	5,00E-02	< 1,00E-02	< 2,00E-02						

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
32979	28333	44193	49190	38411	29363	27048	35943	40112	32322
'	ļ	ļ	ı	ļ	ļ	ļ	ļ	ı	
1,47E+02	1,30E+02	1,05E+02	7,35E+01	1,30E+02	1,00E+02	1,30E+02	1,36E+02	1,06E+02	1,25E+02
1,90E-01	1,10E-01	3,00E-01	4,00E-01	2,00E-01	1,30E-01	1,40E-01	1,20E-01	1,10E-01	1,00E-01
3,50E-01	7,40E+00	6,00E-01	8,30E+00	5,00E-01	4,00E-01	5,00E-01	1,10E+00	2,00E-01	1,30E-01
6,10E+02	7,38E+02	6,71E+02	6,50E+02	6,60E+02	3,50E+02	6,10E+02	3,85E+02	4,78E+02	4,07E+02
-	-	-	-	-	-	-	-	-	-
2,50E+01	2,00E+01	6,00E+01	< 5,00E+00	1,00E+01	1,00E+01	1,50E+01	1,20E+01	< 5,00E+00	2,00E+01
< 1,00E-01									
2,20E+00	5,00E-01	4,00E-01	3,90E+00	1,10E+00	8,00E-01	2,00E+00	1,50E-01	< 2,00E-01	< 2,00E-01
3,70E+01	1,64E+01	2,25E+01	1,57E+01	2,50E+01	1,40E+01	1,40E+01	1,90E+01	1,70E+01	1,76E+01
< 1,00E+00	< 2,00E+00	< 1,00E+00							
1,50E-01	2,20E-01	1,70E-01	1,80E-01	9,00E-02	8,00E-02	9,00E-02	1,40E-01	2,50E-01	7,00E-02
1,10E-01	1,30E-01	1,80E-01	1,60E+00	4,80E-01	8,70E-01	1,70E-01	5,00E-01	1,20E-01	2,00E-01
5,44E+01	5,50E+01	6,31E+01	4,93E+01	4,32E+01	3,14E+01	4,07E+01	4,68E+01	4,83E+01	4,50E+01
< 3,00E-02									
< 5,00E-02	< 5,00E-02	1,12E+00	8,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 2,00E-01	< 2,00E-01
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 1,00E-02						
1,00E-01	< 1,00E-01	< 1,00E-01	1,90E+00	2,30E-01	6,00E-02	2,40E+00	6,00E-02	6,00E-02	< 1,00E-02
< 1,00E-02									
2,90E+01	3,30E+00	4,50E+00	2,50E+01	1,98E+01	1,95E+00	2,50E+01	2,26E+01	1,60E+01	1,20E+01
1,30E+01	1,65E+01	1,66E+01	1,55E+01	1,03E+01	6,70E+00	1,26E+01	1,24E+01	1,20E+01	1,32E+01
1,00E-02	1,00E-02	< 1,00E-02	6,00E-02	4,50E-02	< 1,00E-02	3,00E-02	1,50E-02	1,60E-02	1,50E-02
2,61E+02	3,47E+02	3,66E+02	2,56E+02	3,32E+02	1,67E+02	2,79E+02	1,46E+02	1,32E+02	1,90E+02
3,10E+00	4,60E+00	2,70E+00	6,00E+00	5,70E+00	6,00E+00	3,00E+00	3,50E+00	1,15E+00	9,00E-01
< 5,00E-02	< 3,00E-02	< 3,00E-02	< 3,00E-02	2,30E-01	< 3,00E-02				
< 5,00E-02	< 3,00E-01								
2,20E-01	< 4,00E-02	< 4,00E-02	9,00E-02	< 4,00E-02					
< 1,00E-02									

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
21494	17865	17396	17770	15386	15941	17311	24859	29805	26812
ļ	ļ	ļ	ļ	ļ	ļ	ļ	Į.	ļ	
1,05E+02	8,10E+01	1,80E+02	1,51E+02	8,70E+01	1,78E+02	8,90E+01	5,30E+01	5,30E+01	1,08E+02
2,10E-01	1,60E-01	2,20E-01	2,00E-01	1,70E-01	2,30E-01	2,40E-01	3,40E-01	4,60E-01	2,50E-01
3,10E+00	4,00E-01	5,20E-01	1,20E+00	3,70E-01	5,00E-01	1,50E+00	6,00E-01	2,00E-01	6,00E-01
6,80E+01	1,31E+02	9,20E+01	1,77E+02	1,07E+02	3,79E+02	9,41E+02	8,40E+02	9,26E+02	5,45E+02
-	-	-	-	-	-	-	-	-	-
3,50E+01	2,20E+01	3,30E+01	1,80E+01	3,10E+01	3,00E+01	3,00E+01	4,50E+01	3,50E+01	5,40E+01
< 1,00E-01									
2,60E+00	2,40E+00	1,60E+00	2,10E+00	1,90E+00	1,30E+00	1,60E+00	5,20E+00	3,30E+00	1,30E+00
2,10E+01	1,90E+01	1,35E+01	2,80E+01	1,70E+01	1,78E+01	2,70E+01	2,92E+01	2,27E+01	2,52E+01
< 1,00E+00									
2,40E-01	< 1,00E-01	4,30E-01	2,30E-01	3,00E-01	< 5,00E-02	< 5,00E-02	2,70E-01	1,20E-01	< 1,00E-01
1,47E+00	4,60E-01	2,67E+00	4,70E-01	9,30E-01	2,20E+00	1,80E+00	2,60E+00	9,00E-01	3,00E-01
4,87E+01	2,72E+01	3,43E+01	3,31E+01	4,50E+01	4,82E+01	5,52E+01	6,02E+01	5,33E+01	1,59E+02
< 1,00E-02									
2,30E-01	4,30E-01	8,20E-01	1,20E+00	5,70E-01	6,00E-02	6,80E-01	2,10E-01	1,80E-01	4,00E-01
< 1,00E-02	< 1,00E-02	< 1,00E-02	1,00E-02	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-02	< 1,00E-02	2,00E-01
9,00E-02	< 1,00E-01	1,30E-01	3,40E-01	4,90E-01	< 2,00E-02	< 2,00E-02	< 1,00E-01	< 1,00E-01	7,00E-01
< 3,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
1,65E+01	6,70E+00	1,16E+01	1,56E+01	3,78E+01	2,24E+01	2,23E+01	1,65E+01	9,70E+00	1,60E+01
6,56E+00	4,10E+00	4,80E+00	8,10E+00	1,02E+01	1,44E+01	1,57E+01	2,44E+01	2,27E+01	1,92E+01
< 1,00E-01									
1,04E+02	1,46E+02	9,30E+01	2,15E+02	7,30E+01	3,64E+02	3,76E+02	3,98E+02	3,80E+02	1,43E+02
4,80E+00	3,00E+00	3,40E+00	4,90E+00	2,70E+00	2,70E+00	4,00E+00	3,10E+00	2,24E+00	8,30E+00
< 1,00E-01	< 1,00E-01	1,30E-01	2,60E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	1,00E-02	< 1,00E-02	< 1,00E-02
< 5,00E-01	< 5,00E-02	< 5,00E-02	< 5,00E-02						
< 1,00E-02	2,00E-02	< 1,00E-02							
< 1,00E-02	2,00E-02								

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
32844	27915	20088	22608	26681	18125	21770	18617	25502	31879
'	'	ı	'	'	ı	'	ı	'	
8,50E+01	9,30E+01	8,85E+01	9,80E+01	5,32E+01	8,50E+01	1,02E+02	2,03E+02	1,37E+02	1,27E+02
1,20E-01	1,00E-01	1,30E-01	1,40E-01	2,80E-01	1,50E-01	1,80E-01	3,20E-01	1,00E-01	1,00E-01
6,20E-01	7,40E-01	3,80E-01	1,41E+00	3,00E+00	1,20E+00	7,00E-01	6,00E-01	4,60E-01	5,00E-01
1,94E+02	2,15E+02	9,60E+01	2,68E+02	1,05E+03	2,22E+02	3,00E+02	2,93E+02	1,64E+02	2,04E+02
-	-	-	-	-	-	-	-	-	-
2,20E+01	1,00E+01	1,00E+01	2,50E+01	4,88E+01	3,60E+p1	2,50E+01	4,60E+01	2,50E+01	4,00E+01
< 1,00E-01									
3,80E+00	8,70E-01	< 2,00E-01	1,90E+00	3,20E+00	1,90E+00	1,90E+00	1,93E+00	1,28E+00	1,60E+00
1,65E+01	6,20E+00	1,23E+01	3,73E+01	1,80E+01	1,50E+01	2,40E+00	2,63E+01	2,18E+01	1,60E+01
< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	5,70E+00	< 1,00E+00				
1,10E+00	1,75E+00	6,30E-01	7,60E-01	1,00E+00	3,70E-01	2,40E-01	2,00E-01	1,00E-01	1,20E-01
8,00E-01	1,35E+01	4,30E+00	1,12E+00	5,70E-01	2,80E+00	5,90E+00	3,80E-01	7,00E-02	3,20E-01
5,80E+01	7,80E+01	4,14E+01	5,52E+01	4,26E+01	4,20E+01	3,15E+01	4,80E+01	3,80E+01	4,73E+01
< 1,00E-02									
1,40E-01	2,30E-01	5,80E-01	9,00E-02	6,00E-01	2,70E+00	4,00E-01	1,37E+00	3,80E+00	2,21E+00
8,00E-03	< 5,00E-03	1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	1,00E-02	< 1,00E-02	< 1,00E-02
4,00E-02	1,60E-01	7,00E-02	2,70E-01	8,00E-02	4,00E-02	1,30E-01	2,30E-01	< 1,00E-01	< 1,00E-01
< 3,00E-02									
4,15E+01	5,15E+01	1,36E+01	1,89E+01	3,43E+01	1,60E+01	3,35E+01	1,38E+01	1,93E+01	9,90E+00
6,50E+00	5,30E+00	5,40E+00	7,60E+00	1,10E+01	8,40E+00	4,10E+00	1,20E+01	7,80E+00	7,40E+00
< 1,00E-02	< 1,00E-01								
1,45E+02	1,44E+02	9,72E+01	1,93E+02	5,50E+02	1,61E+02	2,43E+02	2,00E+02	1,10E+02	1,20E+02
2,80E+00	4,40E+00	< 1,80E+00	2,30E+00	2,70E+00	2,80E+00	3,30E+00	6,10E+00	2,70E+00	2,10E+00
< 5,00E-02	< 5,00E-02	8,00E-02	< 5,00E-02	< 5,00E-02	2,00E-01	1,40E-01	2,40E-01	< 1,00E-01	1,80E-01
< 3,00E-01	< 5,00E-01								
< 5,00E-02	< 5,00E-02	< 5,00E-02	6,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	6,00E-02	1,00E-02	< 1,00E-02
-	-	-	< 1,00E-02						

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
2	19150	14706	13425	14667	10198	10136	-	-	-	136045
E+02	3,68E+02	3,97E+02	5,91E+02	6,60E+02	1,15E+03	5,07E+02	-	-	-	6,03E+03
E+00	< 1,92E+00	< 1,47E+00	< 1,34E+00	< 1,47E+00	1,12E+00	7,10E-01	-	-	-	1,34E+01
E+01	< 1,92E+01	< 1,47E+01	< 1,34E+01	< 1,47E+01	< 1,02E+01	< 1,01E+01	-	-	-	1,81E+03
E+02	1,07E+02	8,09E+01	1,21E+02	1,35E+02	1,98E+02	1,11E+02	-	-	-	2,21E+04
	-	-	-	-	-	-	-	-	-	-
E+02	1,92E+02	2,21E+02	1,34E+02	1,76E+02	1,33E+02	1,01E+02	-	-	-	1,47E+03
E+00	< 1,92E+00	< 1,47E+00	< 1,34E+00	< 1,47E+00	< 1,02E+00	< 1,01E+00	-	-	-	< 1,36E+01
E+01	< 9,58E+01	< 7,35E+01	< 6,71E+01	< 7,33E+01	< 5,10E+01	< 5,07E+01	-	-	-	< 6,80E+02
E+02	2,41E+02	1,47E+02	2,08E+02	1,97E+02	2,80E+02	2,08E+02	-	-	-	2,64E+03
E+01	< 1,92E+01	< 1,47E+01	< 1,34E+01	< 1,47E+01	< 1,02E+01	< 1,01E+01	-	-	-	< 1,36E+02
E+00	5,75E+00	2,94E+00	2,69E+00	2,20E+00	2,04E+00	2,33E+00	-	-	-	3,05E+01
E-01	9,58E-01	< 7,35E-01	5,37E-01	4,40E-01	< 5,10E-01	< 5,07E-01	-	-	-	6,17E+00
E+02	7,99E+02	3,82E+02	4,43E+02	3,52E+02	2,86E+02	2,29E+02	-	-	-	4,42E+03
E-01	< 1,92E-01	< 1,47E-01	< 1,34E-01	< 1,47E-01	< 1,02E-01	< 1,01E-01	-	-	-	< 1,36E+00
E-01	< 9,58E-01	< 7,35E-01	< 6,71E-01	< 7,33E-01	< 5,10E-01	< 5,07E-01	-	-	-	< 6,80E+00
E-01	< 9,58E-01	< 7,35E-01	4,03E+00	< 7,33E-01	< 5,10E-01	< 5,07E-01	-	-	-	9,36E+00
E-01	2,30E+00	7,06E+00	8,06E-01	7,33E-01	2,04E+00	9,12E-01	-	-	-	1,74E+01
E-01	< 9,58E-01	< 7,35E-01	< 6,71E-01	< 7,33E-01	< 5,10E-01	< 5,07E-01	-	-	-	< 6,80E+00
E+01	1,01E+02	9,71E+01	6,04E+01	5,13E+01	3,98E+01	3,34E+01	-	-	-	6,93E+02
E+02	1,61E+02	9,41E+01	8,46E+01	8,07E+01	6,63E+01	6,59E+01	-	-	-	9,60E+02
E+00	3,68E+00	8,82E-01	1,75E+00	4,40E-01	2,04E-01	1,01E-01	-	-	-	< 1,70E+01
E+02	4,83E+02	5,00E+02	3,76E+02	4,40E+02	3,93E+03	3,24E+02	-	-	-	1,29E+04
E+00	< 9,58E+00	< 7,35E+00	< 6,71E+00	< 7,33E+00	< 5,10E+00	< 5,07E+00	-	-	-	< 6,80E+01
E-01	9,77E-01	< 7,35E-01	2,01E+00	< 7,33E-01	< 5,10E-01	< 5,07E-01	-	-	-	8,16E+00
E+00	< 9,58E+00	< 7,35E+00	< 6,71E+00	< 7,33E+00	< 5,10E+00	< 5,07E+00	-	-	-	< 6,80E+01
E+00	1,72E+00	8,82E-01	1,34E+00	< 7,33E-01	6,12E-01	< 5,07E-01	-	-	-	1,49E+01
E-02	< 9,58E-02	< 7,35E-02	< 6,71E-02	< 7,33E-02	< 5,10E-02	< 5,07E-02	-	-	-	< 6,80E-01

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
8	15370	13338	11996	10445	12621	11800	14128	13206	17838	173024
E+02	7,38E+02	7,34E+02	6,24E+02	5,54E+02	5,68E+02	4,37E+02	6,50E+02	6,37E+02	6,46E+02	8,23E+03
E+00	< 1,54E+00	< 1,33E+00	< 1,20E+00	< 1,04E+00	< 1,26E+00	< 1,18E+00	< 1,41E+00	< 1,32E+00	< 1,78E+00	< 1,73E+01
E+01	< 1,54E+01	< 1,33E+01	< 1,20E+01	< 1,04E+01	< 1,26E+01	< 1,18E+01	< 1,41E+01	< 1,32E+01	< 1,78E+01	< 1,73E+02
E+04	1,46E+02	1,47E+02	1,50E+02	1,04E+02	1,26E+02	2,83E+02	1,24E+02	1,52E+02	1,61E+02	2,50E+04
	-	-	-	-	-	-	-	-	-	-
E+02	1,54E+02	1,33E+02	1,56E+02	1,04E+02	2,52E+02	1,77E+02	2,54E+02	6,60E+01	2,68E+02	2,19E+03
E+00	< 1,54E+00	< 1,33E+00	< 1,20E+00	< 1,04E+00	< 1,26E+00	< 1,18E+00	< 1,41E+00	< 1,32E+00	< 1,78E+00	< 1,73E+01
E+01	< 7,69E+01	< 6,67E+01	< 6,00E+01	< 5,22E+01	< 6,31E+01	< 5,90E+01	< 7,06E+01	< 6,60E+01	< 8,92E+01	< 8,65E+02
E+02	2,92E+02	2,53E+02	1,98E+02	1,25E+02	1,77E+02	1,30E+02	2,29E+02	1,91E+02	4,69E+02	3,78E+03
E+01	< 1,54E+01	< 1,33E+01	< 1,20E+01	< 1,04E+01	< 1,26E+01	< 1,18E+01	< 1,41E+01	< 1,32E+01	< 1,78E+01	< 1,73E+02
E+00	2,77E+01	3,07E+00	1,68E+00	7,31E-01	1,26E+00	< 5,90E-01	< 7,06E-01	7,79E-01	6,06E+00	5,73E+01
E+00	1,38E+00	9,34E-01	6,00E-01	6,27E-01	5,05E-01	7,08E-01	5,93E-01	4,23E-01	1,25E+00	9,66E+00
E+02	4,61E+02	4,00E+02	3,00E+02	2,30E+02	2,90E+02	2,60E+02	4,61E+02	3,70E+02	8,03E+02	5,57E+03
E-01	< 1,54E-01	< 1,33E-01	< 1,20E-01	< 1,04E-01	< 1,26E-01	< 1,18E-01	< 1,41E-01	< 1,32E-01	< 1,78E-01	< 1,73E+00
E-01	< 7,69E-01	< 6,67E-01	< 6,00E-01	< 5,22E-01	< 6,31E-01	< 5,90E-01	< 7,06E-01	< 6,60E-01	< 8,92E-01	< 8,65E+00
E-01	< 7,69E-01	< 6,67E-01	< 6,00E-01	< 5,22E-01	< 6,31E-01	< 5,90E-01	< 7,06E-01	< 6,60E-01	< 8,92E-01	< 8,65E+00
E+00	1,69E+01	9,34E-01	8,40E-01	8,36E-01	1,51E+00	1,18E+00	9,89E-01	1,85E+00	4,46E+01	7,39E+01
E-01	< 7,69E-01	< 6,67E-01	< 6,00E-01	< 5,22E-01	< 6,31E-01	< 5,90E-01	< 7,06E-01	< 6,60E-01	< 8,92E-01	< 8,65E+00
E+02	9,99E+01	5,60E+01	6,72E+01	3,76E+01	7,95E+01	4,96E+01	5,51E+01	4,89E+01	3,44E+02	1,79E+03
E+02	9,99E+01	1,11E+02	7,80E+01	6,79E+01	6,94E+01	6,61E+01	9,75E+01	8,58E+01	1,34E+02	1,24E+03
E+00	1,38E+00	1,07E+00	4,80E-01	3,13E-01	2,52E-01	1,18E-01	2,83E-01	1,72E-01	1,78E+00	2,51E+01
E+03	4,61E+02	4,80E+02	4,02E+02	3,13E+02	3,41E+02	3,30E+02	4,03E+02	3,75E+02	5,35E+03	1,86E+04
E+00	< 7,69E+00	< 6,67E+00	< 6,00E+00	< 5,22E+00	< 6,31E+00	< 5,90E+00	< 7,06E+00	< 6,60E+00	< 8,92E+00	< 8,65E+01
E-01	1,08E+00	< 6,67E-01	< 6,00E-01	6,27E-01	< 6,31E-01	< 5,90E-01	< 7,06E-01	< 6,60E-01	< 8,92E-01	1,01E+01
E+00	< 7,69E+00	< 6,67E+00	< 6,00E+00	< 5,22E+00	< 6,31E+00	< 5,90E+00	< 7,06E+00	< 6,60E+00	< 8,92E+00	< 8,65E+01
E+00	2,00E+00	1,20E+00	< 6,00E-01	6,27E-01	7,57E-01	7,08E-01	7,06E-01	7,92E-01	1,96E+00	1,75E+01
E-02	< 7,69E-02	< 6,67E-02	< 6,00E-02	< 5,22E-02	< 6,31E-02	< 5,90E-02	< 7,06E-02	< 6,60E-02	< 8,92E-02	< 8,65E-01

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
3	16806	11989	12915	12921	11237	14861	18515	15656	18750	155255
E+02	7,06E+02	9,95E+02	5,81E+02	5,17E+02	4,49E+A2	5,50E+02	6,48E+02	6,26E+02	8,44E+02	6,98E+03
E+00	2,69E+00	< 1,20E+00	1,29E+00	< 1,29E+00	< 1,12E+00	< 1,49E+00	< 1,85E+00	1,57E+00	< 1,88E+00	1,65E+01
E+01	< 1,68E+01	< 5,99E+00	< 6,46E+00	< 1,29E+01	< 1,12E+01	< 1,49E+01	< 1,85E+01	< 1,57E+01	< 1,88E+01	< 1,43E+02
E+02	2,35E+02	1,80E+02	1,94E+02	1,29E+02	1,29E+02	2,17E+04	1,48E+02	1,57E+02	2,44E+02	2,34E+04
	-	-	-	-	-	-	-	-	-	-
E+02	1,18E+03	1,20E+02	1,29E+02	1,29E+02	3,93E+02	3,72E+02	1,85E+02	1,57E+02	3,75E+02	3,40E+03
E+00	< 1,68E+00	< 1,20E+00	< 1,29E+00	< 1,29E+00	< 1,12E+00	< 1,49E+00	< 1,85E+01	< 1,57E+01	< 1,88E+00	< 4,63E+01
E+01	< 8,40E+01	< 5,99E+01	< 6,46E+01	< 6,46E+01	< 5,62E+01	< 7,43E+01	< 9,26E+01	< 7,83E+01	< 9,38E+01	< 7,76E+02
E+02	5,04E+02	2,64E+02	1,94E+02	1,55E+02	9,55E+01	2,08E+02	5,18E+02	5,17E+02	6,56E+02	3,63E+03
E+01	< 1,68E+01	< 1,20E+01	< 1,29E+01	< 1,29E+01	< 1,12E+01	< 1,49E+01	< 1,85E+01	2,04E+01	< 1,88E+01	1,60E+02
E+00	5,88E+00	1,20E+00	3,36E+00	3,75E+00	8,99E-01	2,97E+00	6,48E+00	2,82E+00	4,31E+00	3,63E+01
E-01	1,68E+00	4,08E-01	1,03E+00	3,88E-01	4,49E-01	7,43E-01	1,67E+00	6,26E-01	1,13E+00	8,91E+00
E+02	6,72E+02	3,24E+02	3,36E+02	2,71E+02	2,70E+02	3,42E+02	8,33E+02	7,51E+02	9,38E+02	5,47E+03
E-01	< 1,68E-01	< 1,20E-01	< 1,29E-01	< 1,29E-02	< 1,12E-01	< 1,49E-01	< 1,85E-01	< 1,57E-01	< 1,88E-01	< 1,44E+00
E-01	< 8,40E-01	< 5,99E-01	< 6,46E-01	< 6,46E-01	< 5,62E-01	< 7,43E-01	< 9,26E-01	< 7,83E-01	< 9,38E-01	7,82E+00
E-01	< 8,40E-01	< 5,99E-01	< 6,46E-01	< 6,46E-01	< 5,62E-01	< 7,43E-01	< 9,26E-01	< 7,83E-01	< 9,38E-01	< 7,76E+00
E-01	1,85E+00	7,19E-01	9,04E-01	1,03E+00	1,01E+00	1,19E+00	1,30E+00	1,10E+00	1,13E+00	1,17E+01
E-01	< 8,40E-01	< 5,99E-01	< 6,46E-01	< 6,46E-01	< 5,62E-01	< 7,43E-01	< 9,26E-01	< 7,83E-01	< 9,38E-01	< 7,76E+00
E+01	8,40E+01	5,16E+01	7,75E+01	4,65E+01	2,70E+01	9,66E+01	7,41E+01	9,39E+01	8,44E+01	7,35E+02
E+01	1,23E+02	7,91E+01	9,04E+01	7,24E+01	6,41E+01	6,24E+01	1,57E+02	1,50E+02	1,84E+02	1,15E+03
E+00	8,07E+00	2,52E+00	1,55E+00	6,46E-01	1,12E-01	1,49E-01	2,78E+00	3,91E+00	5,63E+00	3,27E+01
E+02	4,71E+02	4,32E+02	5,17E+02	3,88E+02	3,15E+02	8,17E+03	4,63E+02	4,38E+02	5,63E+02	1,24E+04
E+00	< 8,40E+00	< 5,99E+00	7,36E+00	< 6,46E+00	< 5,62E+00	< 7,43E+00	2,78E+01	< 7,83E+00	< 9,38E+00	9,70E+01
E-01	1,68E+00	6,47E-01	< 6,46E-01	< 6,46E-01	< 5,62E-01	< 7,43E-01	< 9,26E-01	1,72E+00	1,31E+00	1,05E+01
E+00	< 8,40E+00	< 5,99E+00	< 6,46E+00	< 6,46E+00	< 5,62E+00	< 7,43E+00	< 9,26E+00	< 7,83E+00	< 9,38E+00	< 7,76E+01
E+00	3,36E+00	2,16E+00	1,68E+00	9,04E-01	< 5,62E-01	1,34E+00	1,85E+00	3,13E+00	5,63E+00	2,49E+01
E-02	< 8,40E-02	< 5,99E-02	< 6,46E-02	< 6,46E-02	< 5,62E-02	< 7,43E-02	< 9,26E-02	< 7,83E-02	< 9,38E-02	< 7,76E-01

3	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
9	13404	15107	19469	16559	12222	6261	4426	6363	2949	153469
E+03	6,30E+02	1,06E+02	9,15E+02	1,21E+03	5,38E+02	2,94E+02	3,23E+02	1,97E+02	1,06E+02	8,11E+03
E+00	< 1,34E+00	< 1,51E+00	< 1,95E+00	< 1,66E+00	1,22E+00	< 6,26E-01	4,87E-01	5,73E-01	< 2,95E-01	1,64E+01
E+01	< 1,34E+01	< 1,51E+01	< 1,95E+01	< 1,66E+01	5,26E+01	< 6,26E+00	< 4,43E+00	< 6,36E+00	< 2,95E+00	1,94E+02
E+02	1,61E+02	4,53E+01	2,34E+02	6,13E+02	1,17E+02	6,26E+01	6,64E+00	8,91E+01	2,68E+01	3,10E+03
	-	-	-	-	-	-	-	-	-	-
E+01	1,34E+02	1,51E+02	9,73E+01	1,66E+02	2,44E+02	6,26E+01	5,75E+01	1,15E+02	2,95E+01	1,74E+03
E+00	< 1,34E+00	< 1,51E+00	< 1,95E+00	< 1,66E+00	< 1,22E+00	< 6,26E-01	< 4,43E-01	< 6,36E-01	< 2,95E-01	< 1,53E+01
E+01	< 6,70E+01	< 7,55E+01	< 9,73E+01	< 8,28E+01	< 6,11E+01	< 3,13E+01	< 2,21E+01	< 3,18E+01	< 1,47E+01	< 7,67E+02
E+02	1,74E+02	5,29E+01	2,92E+02	2,98E+02	1,34E+02	6,89E+01	1,90E+02	1,62E+02	1,06E+02	3,92E+03
E+01	< 1,34E+01	< 1,51E+01	< 1,95E+01	< 1,66E+01	< 1,22E+01	< 6,26E+00	< 4,43E+00	< 6,36E+00	< 2,95E+00	1,92E+02
E-01	6,70E-01	4,53E+00	< 9,73E-01	8,28E+00	< 6,11E-01	6,26E-01	< 2,21E-01	1,65E+00	1,36E+00	2,41E+01
E-01	< 4,02E-01	6,04E-01	2,14E+00	2,15E+00	6,11E-01	3,76E-01	2,92E-01	4,20E-01	1,36E-01	9,21E+00
E+02	4,02E+02	4,68E+02	6,04E+02	5,46E+02	3,12E+02	1,31E+02	1,50E+02	2,70E+02	1,28E+02	5,79E+03
E-01	< 1,34E-01	< 1,51E-01	< 1,95E-01	< 1,66E-01	< 1,22E-01	< 6,26E-02	< 4,43E-02	7,64E-02	< 2,95E-02	1,55E+00
E-01	< 6,70E-01	< 7,55E-01	< 9,73E-01	< 8,28E-01	< 6,11E-01	< 3,13E-01	< 2,21E-01	< 3,18E-01	< 1,47E-01	< 7,67E+00
E-01	< 6,70E-01	< 7,55E-01	< 9,73E-01	< 8,28E-01	< 6,11E-01	< 3,13E-01	< 2,21E-01	< 3,18E-01	< 1,47E-01	< 7,67E+00
E+00	1,47E+00	1,51E+00	< 9,73E-01	9,94E-01	8,56E-01	4,38E-01	< 2,21E-01	3,18É-01	< 1,47E-01	2,32E+01
E-01	< 6,70E-01	< 7,55E-01	< 9,73E-01	< 8,28E-01	< 6,11E-01	< 3,13E-01	< 2,21E-01	< 3,18E-01	< 1,47E-01	< 7,67E+00
E+02	6,70E+01	1,06E+02	5,84E+01	9,94E+01	6,11E+01	2,32E+01	2,88E+01	3,88E+01	1,92E+01	9,04E+02
E+02	1,13E+02	9,06E+01	1,07E+02	1,13E+02	6,84E+01	3,76E+01	3,19E+01	5,28E+01	2,54E+01	1,08E+03
E+00	3,35E-01	4,53E-01	5,84E-01	3,31E-01	9,78E-02	4,38E-02	7,52E-01	2,99E+00	1,56E+00	2,17E+01
E+02	4,02E+02	4,23E+02	6,62E+02	7,62E+02	3,67E+02	1,88E+02	1,28E+02	1,72E+02	7,96E+01	5,63E+03
E+00	< 6,70E-01	< 7,55E+0	< 9,73E+00	< 8,28E+00	1,10E+01	< 3,13E+00	< 2,21E+00	5,73E+00	< 1,47E+00	7,81E+01
E+00	< 6,70E-01	< 7,55E-01	< 9,73E-01	< 8,28E-01	< 6,11E-01	< 3,13E-01	< 2,21E-01	5,73E-01	2,65E-01	8,24E+00
E+00	< 6,70E+00	< 7,55E+00	< 9,73E+00	< 8,28E+00	< 6,11E+00	< 3,13E+00	< 2,21E+00	< 3,18E+00	< 1,47E+00	< 7,67E+01
E+00	1,21E+00	< 7,55E-01	1,75E+00	< 8,28E-01	< 6,11E-01	3,13E-01	3,98E-01	1,15E+00	8,85E-01	2,12E+01
E-02	< 6,70E-02	< 7,55E-02	< 9,73E-02	< 8,28E-02	< 6,11E-02	< 3,13E-02	< 2,21E-02	< 3,18E-02	< 1,47E-02	< 7,67E-01

\$	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
6	12364	18970	13668	10611	14885	13070	20326	22677	20315	193995
E+02	6,49E+02	9,86E+02	3,42E+02	3,08E+02	5,06E+02	5,62E+02	4,07E+02	1,09E+03	8,13E+02	7,87E+03
E+01	< 1,24E+00	< 1,90E+00	2,05E+00	< 1,06E+00	< 1,49E+00	< 1,31E+00	< 2,03E+00	2,27E+00	2,03E+00	4,74E+01
E+01	< 1,24E+01	< 1,90E+01	< 1,37E+01	< 1,06E+01	< 1,49E+01	< 1,31E+01	< 2,03E+01	< 2,27E+01	< 2,03E+01	< 1,94E+02
E+02	1,11E+02	2,28E+02	9,57E+01	1,49E+02	3,27E+02	1,05E+02	2,03E+02	7,71E+02	4,06E+02	3,00E+03
	-	-	-	-	-	-	-	-	-	-
E+02	1,24E+02	1,90E+02	1,37E+02	1,06E+02	1,49E+02	1,31E+02	< 1,02E+02	4,54E+02	3,05E+02	2,17E+03
E+00	< 1,24E+00	< 1,90E+00	< 1,37E+00	< 1,06E+00	< 1,49E+00	< 1,31E+00	< 2,03E+00	< 2,27E+001	< 2,03E+00	< 1,94E+01
E+01	< 6,18E+01	< 9,49E+01	< 6,83E+01	< 5,31E+01	< 7,44E+01	< 6,54E+01	< 1,02E+02	< 1,13E+02	< 1,02E+02	< 9,70E+02
E+02	1,32E+02	3,13E+02	5,88E+01	4,24E+01	1,79E+02	1,05E+02	1,42E+02	2,72E+03	1,87E+03	6,51E+03
E+01	< 1,24E+01	< 1,90E+01	< 1,37E+01	< 1,06E+01	< 1,49E+01	< 1,31E+01	< 2,03E+01	< 2,27E+01	< 2,03E+01	< 1,94E+02
E+00	< 6,18E-01	< 1,90E+01	1,09E+00	1,06E+00	4,47E+00	< 6,54E-01	2,44E+00	4,76E+00	1,83E+00	5,40E+01
E+00	7,42E-01	9,49E-01	6,83E-01	8,49E-01	7,44E-01	1,05E+00	1,02E+00	1,36E+00	8,13E-01	1,07E+01
E+02	4,77E+02	6,26E+02	2,87E+02	2,33E+02	5,21E+02	5,23E+02	4,47E+02	5,90E+02	9,14E+02	6,27E+03
E-01	1,24E-01	9,49E-01	1,37E+00	< 1,06E-01	< 1,49E-01	9,15E-01	< 2,03E-01	< 2,27E-01	< 2,03E-01	4,71E+00
E-01	< 6,18E-01	< 9,49E-01	< 6,83E-01	6,37E-01	< 7,44E-01	< 6,54E-01	< 1,02E+00	< 1,13E+00	< 1,02E+00	9,81E+00
E-01	8,65E-01	1,90E+01	< 6,83E-01	< 5,31E-01	< 7,44E-01	< 6,54E-01	< 1,02E+00	< 1,13E+00	< 1,02E+00	2,80E+01
E+00	1,98E+01	5,69E+01	1,09E+01	< 5,31E-01	2,08E+00	< 6,54E-01	7,11E+00	< 1,13E+00	1,02E+00	2,55E+02
E-01	< 6,18E-01	< 9,49E-01	< 6,83E-01	8,49E-01	< 7,44E-01	< 6,54E-01	< 1,02E+00	< 1,13E+00	< 1,02E+00	1,00E+01
E+01	7,54E+01	8,54E+01	8,20E+01	1,49E+02	1,34E+02	6,54E+01	1,32E+02	1,81E+02	1,16E+02	1,35E+03
E+01	7,42E+01	2,12E+02	8,75E+01	6,37E+01	7,52E+03	8,76E+01	9,76E+01	1,70E+02	1,85E+02	8,77E+03
E-02	4,95E-01	< 9,49E-02	5,47E+00	< 5,31E-02	< 7,44E-01	2,61E-01	1,83E+00	2,27E-01	6,09E+00	1,64E+01
E+02	4,70E+02	4,74E+02	4,92E+02	3,93E+02	4,32E+02	3,92E+02	4,67E+02	6,80E+02	5,08E+02	5,80E+03
E+01	< 6,18E+00	< 9,49E+00	8,20E+00	< 5,31E+00	< 7,44E+00	< 6,54E+00	< 1,02E+01	< 1,13E+01	< 1,02E+01	1,04E+02
E-01	< 6,18E-01	< 9,49E-01	< 6,83E-01	< 5,31E-01	< 7,44E-01	< 6,54E-01	< 1,02E+00	< 1,13E+00	1,02E+00	9,70E+00
E+00	< 6,18E+00	< 9,49E+00	< 6,83E+00	< 5,31E+00	< 7,44E+00	< 6,54E+00	< 1,02E+01	< 1,13E+01	< 1,02E+01	< 9,70E+01
E-01	< 6,18E-01	< 9,49E-01	< 6,83E-01	< 5,31E-01	7,44E-01	< 6,54E-01	< 1,02E+00	< 1,13E+00	4,06E+00	1,33E+01
E-02	< 6,18E-02	< 9,49E-02	< 6,83E-02	< 5,31E-02	< 7,44E-02	1,96E-01	< 1,02E-01	< 1,13E-01	< 1,02E-01	1,10E+00

5	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
0	10555	8870	8308	7704	12391	14667	15833	9493	18008	177055
E+03	7,39E+02	4,88E+02	4,15E+02	3,85E+02	5,58E+02	5,66E+02	5,54E+02	9,02E+02	7,74E+02	8,60E+03
E+00	< 1,06E+00	< 8,87E-01	< 8,31E-01	< 7,70E-01	< 1,24E+00	< 1,47E+00	< 1,58E+00	< 9,49E-01	< 1,80E+00	< 1,77E+01
E+01	4,96E+01	< 8,87E+00	< 8,31E+00	< 7,70E+00	< 1,24E+01	< 1,47E+01	< 1,58E+01	3,80E+01	< 1,80E+0	2,45E+02
E+02	1,32E+02	5,77E+01	2,33E+02	1,00E+02	1,98E+03	5,87E+02	2,85E+02	3,32E+02	3,06E+02	5,04E+03
	-	-	-	-	-	-	-	-	-	-
E+02	1,06E+02	1,77E+02	8,31E+01	4,62E+02	4,96E+01	2,20E+02	2,37E+02	< 9,49E+01	1,80E+02	2,96E+03
E+00	< 1,06E+00	< 8,87E-01	< 8,31E-01	< 7,70E-01	< 1,24E+00,	< 1,47E+00	< 1,58E+00	< 9,49E-011	< 1,80E+00	< 1,77E+01
E+01	< 5,28E+01	< 4,44E+01	< 4,15E+01	< 3,85E+01	< 6,20E*01	< 7,33E+01	< 7,92E+01	< 4,75E+01	< 9,00E+01	< 8,85E+02
E+02	7,81E+02	4,44E+01	1,66E+01	6,16E+01	7,81E+01	2,13E+02	6,65E+01	9,87E+01	4,14E+02	2,56E+03
E+01	< 5,28E+01	< 4,44E+01	< 4,15E+01	< 3,85E+01	< 6,20E+01	< 7,33E+01	< 7,92E+01	< 4,75E+01	< 9,00E+01	< 8,85E+02
E+00	3,17E+00	1,24E+01	2,49E+00	< 3,85E-01	< 6,20E-01	2,35E+00	< 7,92E-01	< 4,75E-01	4,32E+00	4,13E+01
E+00	4,22E-01	5,32E-01	7,48E-01	3,85E-01	7,43E-01	1,47E+00	9,50E-01	8,54E-01	9,00E-01	1,05E+01
E+02	2,16E+02	3,02E+02	2,74E+02	2,31E+02	2,87E+02	4,84E+02	4,54E+02	2,85E+02	6,66E+02	5,32E+03
E-01	< 1,06E-01	< 8,87E-02	< 8,31E-02	1,16E-01	< 6,20E-01	1,47E-01	< 7,92E-01	< 9,49E-02	< 1,80E-01	3,10E+00
E-01	< 5,28E-01	< 4,44E-01	< 4,15E-01	< 3,85E-01	< 6,20E-01	< 7,33E-01	< 7,92E-01	< 4,75E-01	< 9,00E-01	< 8,85E+00
E-01	< 5,28E-01	< 4,44E-01	< 4,15E-01	< 3,85E-01	< 6,20E-01	< 7,33E-01	< 7,92E-01	< 4,75E-01	< 9,00E-01	< 8,85E+00
E+00	2,11E+00	1,06E+01	7,48E+00	5,39E-01	1,61E+00	7,33E+00	1,58E+00	6,65E-01	2,52E+00	4,15E+01
E-01	< 5,28E-01	< 4,44E-01	< 4,15E-01	< 3,85E-01	< 6,20E-01	< 7,33E-01	< 7,92E-01	< 4,75E-01	9,00E-01	8,85E+00
E+02	8,66E+01	1,33E+02	5,48E+01	3,62E+01	9,54E+01	1,22E+02	8,23E+01	4,94E+01	1,26E+02	1,55E+03
E+02	4,22E+01	8,43E+01	5,15E+01	4,62E+01	5,33E+01	7,63E+01	8,07E+01	5,22E+01	1,06E+02	9,49E+02
E-01	< 2,11E-01	4,44E-01	< 4,15E-02	1,54E-01	< 2,48E-01	2,93E-01	< 3,17E-01	4,75E-02	1,26E+00	4,44E+00
E+02	3,91E+02	6,21E+02	2,66E+02	2,39E+02	1,09E+03	4,06E+02	4,75E+02	3,13E+02	1,80E+02	6,66E+03
E+00	< 5,28E+00	< 4,44E+00	< 4,15E-01	3,85E+00	3,47E+00	3,81E+00	2,22E+00	< 4,75E+00	1,26E+01	7,39E+01
E+00	< 5,28E-01	< 4,44E-01	< 4,15E-01	< 3,85E-01	< 6,20E-01	< 7,33E-01	< 7,92E-01	< 4,75E-01	< 9,00E-01	9,18E+00
E+00	< 5,28E+00	< 4,44E+00	< 4,15E+00	< 3,85E+00	< 6,20E+00	< 7,33E+00	< 7,92E+00	< 4,75E+00	< 9,00E+00	< 8,85E+01
E-01	< 5,28E-01	< 4,44E-01	< 4,15E-01	< 3,85E-01	< 6,20E-01	< 7,33E-01	< 7,92E-01	< 4,75E-01	< 9,00E-01	1,16E+01
E-02	< 5,28E-02	< 4,44E-02	< 4,15E-02	< 3,85E-02	< 6,20E-02	< 7,33E-01	< 7,92E-02	< 4,75E-02	5,40E-01	2,00E+00

5	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
2	12431	12479	6411	7228	11867	12242	12208	19231	22268	159802
E+02	2,29E+03	1,75E+03	6,86E+02	1,05E+03	6,53E+A2	4,90E+02	4,52E+02	7,69E+02	8,24E+02	1,08E+04
E+00	< 1,24E+00	< 1,25E+00	< 6,41E-01	< 7,23E-01	< 1,19E+00	< 1,22E+00	< 1,22E+00	< 1,92E+00	< 2,23E+00	< 1,60E+01
E+01	< 1,24E+01	< 1,25E+01	1,28E+01	< 3,61E+00	< 1,19E+01	< 1,22E+01	< 1,22E+01	5,00E+01	< 2,23E+01	2,33E+02
E+02	1,12E+02	1,25E+02	8,98E+01	1,08E+02	2,61E+02	2,94E+02	2,08E+02	3,85E+02	1,56E+02	2,21E+03
	-	-	-	-	-	-	-	-	-	-
E+02	8,08E+02	1,25E+02	6,41E+01	1,08E+02	1,19E+02	1,22E+02	1,83E+02	2,88E+02	2,23E+02	2,60E+03
E+01	< 1,24E+00	< 1,25E+00	< 6,41E-01	< 7,23E-01	< 1,19E+00	< 1,22E+00	< 1,22E+00	< 1,92E+00	< 2,23E+00	< 2,69E+01
E+00	< 6,22E+00	< 6,24E+00	< 3,21E+00	< 3,61E+00	< 5,93Et01	< 6,12E+01	< 6,10E+01	< 9,62E+01	< 1,11E+02	4,29E+02
E+02	1,37E+02	1,87E+02	7,05E+01	1,23E+02	1,66E+02	1,47E+02	1,59E+02	3,27E+02	2,67E+02	2,05E+03
E+01	< 6,22E+01	< 6,24E+01	< 3,21E+01	< 3,61E+01	< 5,93E+01	< 6,12E+01	< 6,t0E+01	< 9,62E+01	< 1,11E+02	< 7,99E+02
E+00	3,73E+00	6,24E+01	5,13E+00	1,45E+00	2,37E+00	6,12E+00	3,66E+00	< 3,85E+00	4,45E+00	1,03E+02
E-01	3,73E-01	2,50E-01	3,21E-01	3,61E-01	3,56E-01	9,79E-01	< 6,10E-02	9,62E-01	8,91E-01	6,58E+00
E+02	3,73E+02	3,74E+02	1,97E+02	2,17E+02	3,56E+02	4,65E+02	4,03E+02	6,73E+02	5,79E+02	5,16E+03
E-01	< 1,24E-01	< 1,25E-01	< 6,41E-02	< 7,23E-02	< 1,19E-01	< 1,22E-01	< 1,22E-01	< 1,92E-01	< 2,23E-01	1,89E+00
E+00	< 6,22E+00	< 6,24E+00	< 3,21E-01	< 3,61E-01	< 5,93E-01	< 6,12E-01	< 6,10E-01	< 9,62E-01	< 1,11E+00	< 3,87E+01
E-01	< 6,22E-01	< 6,24E-01	< 3,21E-01	< 3,61E-01	< 5,93E-01	< 6,12E-01	< 6,10E-01	< 9,62E-01	< 1,11E+00	8,13E+00
E+00	4,97E+00	3,74E+01	3,21E+00	1,08E+00	1,19E+00	6,12E+00	3,66E+00	1,15E+00	4,45E+00	7,58E+01
E-01	< 6,22E-02	1,25E+01	< 3,21E-01	< 3,61E-01	< 5,93E-01	< 6,12E-01	< 6,10E-01	< 9,62E-01	< 1,11E+00	1,93E+01
E+02	1,86E+02	2,50E+02	6,09E+01	1,01E+02	1,66E+02	1,35E+02	1,82E+02	2,69E+02	1,87E+02	2,02E+03
E+01	9,94E+01	1,16E+02	5,64E+01	6,94E+01	5,93E+01	5,63E+01	4,39E+01	8,27E+01	8,46E+01	8,47E+02
E-01	1,86E-01	< 6,24E-02	< 3,21E-02	2,17E-01	5,93E-01	8,57E-01	3,66E-01	3,85E-01	4,45E-01	4,01E+00
E+02	8,70E+02	1,19E+03	3,97E+02	6,51E+02	4,75E+02	3,67E+02	3,66E+02	6,73E+02	6,24E+02	7,06E+03
E+00	< 5,59E+00	< 5,62E+00	3,21E+00	2,82E+01	< 5,93E+00	< 6,12E+00	< 6,10E+00	9,62E+00	1,56E+01	1,07E+02
E-01	< 6,22E-01	< 6,24E-01	< 3,21E-01	< 3,61E+00	< 5,93E-01	< 6,12E-01	< 6,10E-01	< 9,62E-01	< 1,11E+00	< 1,12E+01
E+00	< 6,22E+00	< 6,24E+00	< 3,21E+00	< 3,61E+00	< 5,93E+00	< 6,12E+00	< 6,10E+00	< 9,62E+00	< 1,11E+01	< 7,99E+01
E-01	< 6,22E-01	< 6,24E-01	< 3,21E-01	< 3,61E-01	< 5,93E-01	< 6,12E-01	< 6,10E-01	1,54E+00	< 1,11E+00	9,07E+00
E-01	< 6,22E-02	< 6,24E-02	< 3,21E-02	< 3,61E-02	< 5,93E-02	< 6,12E-02	< 6,10E-02	< 9,62E-02	< 1,11E-01	9,21E-01

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
3	14056	8330	15573	10678	10437	15576	14311	10098	22559	155428
E+02	8,43E+02	4,58E+02	7,32E+02	3,90E+02	3,86E+02	2,49E+02	5,37E+02	3,53E+02	9,02E+02	6,42E+03
E-01	1,41E+00	8,33E-01	< 1,56E+00	< 1,07E+00	1,15E+00	< 1,56E+00	< 1,43E+00	< 1,01E+00	< 2,26E+00	1,53E+01
E+01	1,62E+02	5,41E+01	7,94E+01	2,46E+01	1,18E+02	4,05E+02	1,02E+03	3,43E+02	1,13E+03	3,42E+03
E+02	1,27E+03	9,75E+02	2,91E+03	1,40E+03	1,25E+03	2,49E+02	3,58E+02	4,34E+02	3,16E+02	9,61E+03
	-	-	-	-	-	-	-	-	-	-
E+01	2,11E+02	1,67E+02	7,79E+01	1,28E+02	1,57E+02	1,56E+02	2,86E+02	1,82E+02	2,26E+02	2,05E+03
E+02	< 1,41E+00	< 8,33E-01	< 1,56E+00	< 1,07E+00	< 1,04E+00	< 1,56E+00	< 1,43E+00	< 1,01E+00	< 2,26E+00	3,47E+02
E+00	< 7,03E+00	2,50E+00	6,70E+00	4,27E+00	< 1,04E+01	1,56E+01	< 1,43E+01	< 1,01E+01	< 1,13E+01	9,08E+01
E+02	6,04E+02	6,08E+01	1,51E+02	1,09E+02	1,17E+02	9,81E+02	1,43E+02	1,21E+02	3,16E+02	3,03E+03
E+01	< 7,03E+01	< 8,33E+00	1,56E+00	2,46E+01	< 1,04E+01	< 7,79E+01	< 7,16E+01	< 5,05E+01	< 1,13E+02	5,23E+02
E+00	4,22E+00	6,66E+00	< 4,67E+00	< 3,20E+00	< 3,13E+00	< 4,67E+00	< 4,29E+00	< 5,05E-01	9,02E+00	4,65E+01
E+00	< 7,03E+00	< 4,17E+00	4,67E-01	< 3,20E-01	< 3,13E+00	< 4,67E+00	< 4,29E+00	< 5,05E-02	< 1,13E+00	3,46E+01
E+02	3,37E+02	2,25E+02	3,89E+02	2,64E+02	3,15E+02	3,88E+02	4,29E+02	5,05E+02	7,38E+02	4,61E+03
E-01	< 2,81E-01	< 1,67E-01	< 4,67E+00	< 3,20E+00	< 3,13E+00	< 4,67E+00	< 4,29E+00	< 1,01E-01	< 2,26E-01	< 2,14E+01
E+00	< 1,41E+01	< 8,33E+00	< 7,79E+00	< 5,34E+00	< 5,22E+00	< 7,79E+00	< 7,16E+00	< 5,05E+00	< 1,13E+01	8,23E+01
E+00	< 7,03E+00	< 4,17E+00	< 4,67E+00	< 3,20E+00	< 3,13E+00	< 4,67E+00	< 4,29E+00	< 5,05E-01	< 1,13E+00	< 3,86E+01
E+00	< 7,03E+00	< 4,17E+00	4,05E+00	< 5,34E-01	1,15E+00	4,67E+00	1,72E+00	6,97E+02	4,51E+00	7,32E+02
E-01	5,20E+01	< 4,17E+00	< 7,79E+00	< 5,34E+00	< 5,22E+00	< 7,79E+00	< 7,16E+00	< 5,05E-01	< 1,13E+00	9,32E+01
E+01	3,19E+02	8,58E+01	4,36E+02	1,39E+02	2,61E+02	3,66E+02	1,72E+02	1,31E+02	3,61E+02	2,57E+03
E+01	5,06E+01	3,42E+01	3,89E+01	2,99E+01	2,50E+01	3,74E+01	4,58E+01	8,89E+01	9,47E+01	5,64E+02
E-01	< 2,81E-01	< 1,67E-01	< 3,11E-02	< 2,14E-02	4,17E-02	1,56E-01	1,43E-01	2,02E-01	< 4,51E-01	2,17E+00
E+02	8,01E+02	4,13E+02	1,14E+03	7,37E+02	8,35E+02	5,53E+02	4,29E+02	4,14E+02	7,35E+02	7,32E+03
E-01	1,97E+01	< 8,33E+00	< 1,56E+01	9,61E+00	9,39E+00	3,12E+00	1,43E+00	1,82E+01	< 1,13E+01	1,19E+02
E-01	< 1,41E+00	< 8,33E-01	< 1,56E+01	< 1,07E+01	< 1,04E+01	< 1,56E+01	< 1,43E+01	< 5,05E-01	1,58E+00	7,23E+01
E-01	< 4,22E+00	< 2,50E+00	< 2,34E+02	< 1,60E+02	< 1,57E+02	< 2,34E+02	< 2,15E+02	< 5,05E+00	1,13E+01	1,08E+03
E-01	< 1,41E+00	< 8,33E-01	< 3,11E+01	< 1,07E+02	< 1,04E+02	< 1,56E+02	< 1,43E+02	< 5,05E-01	< 1,13E+00	5,46E+02
E-01	< 2,81E-01	< 1,67E-01	< 3,11E-02	< 2,14E-02	< 2,09E-02	< 3,12E-02	< 2,86E-02	< 5,05E-02	< 1,13E-01	< 2,52E+00

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
3	5385	2718	1949	6033	4672	8476	8750	16719	18198	79176
E+02	2,69E+02	1,77E+02	1,03E+02	2,41E+02	2,80E+02	4,58E+02	4,81E+02	9,53E+02	9,08E+02	4,38E+03
E-01	7,00E-01	< 2,72E-01	< 1,95E-01	< 6,03E-01	6,07E-01	< 8,48E-01	< 8,75E-01	< 1,67E+00	< 1,82E+00	8,59E+00
E-01	< 5,39E-01	< 2,72E-01	1,95E+00	< 6,03E+00	< 4,67E+00	< 8,48E+00	< 8,75E+00	2,68E+01	< 1,82E+01	8,12E+01
E+02	6,14E+02	4,62E+02	2,73E+02	5,43E+02	8,88E+02	7,22E+02	1,34E+03	8,69E+02	2,98E+02	7,30E+03
	-	-	-	-	-	-	-	-	-	-
E+01	1,35E+02	4,35E+01	4,87E+01	6,03E+01	1,87E+02	1,70E+02	2,63E+02	3,34E+02	3,82E+02	1,73E+03
E-01	< 5,39E-01	< 2,72E-01	< 1,95E-00	< 6,03E-01	< 4,67E-01	< 8,48E-01	< 8,75E-01	< 1,67E+00	1,82E+00	< 7,92E+00
E-01	< 1,08E+00	< 5,44E-01	< 3,90E-01	< 1,21E+00	< 9,34E-01	< 1,70E+00	< 1,75E+00	< 3,34E+00	< 9,10E+00	< 2,13E+01
E+01	8,08E+01	4,62E+01	4,48E+01	1,21E+02	9,34E+01	1,10E+02	1,75E+02	2,51E+02	2,27E+02	1,27E+03
E+00	< 5,39E+00	< 2,72E+00	< 1,95E+00	< 6,03E+00	< 4,67E+00	< 8,48E+00	< 8,75E+00	< 1,67E+01	1,82E+01	< 8,33E+01
E-01	1,35E+00	4,35E+00	2,40E+00	1,51E+01	1,50E+00	1,70E+00	2,63E+00	< 3,34E+00	< 3,64E+00	3,69E+01
E-02	2,69E-01	3,53E-01	9,75E-02	3,62E-01	2,34E-01	1,02E+00	1,75E+00	3,34E+00	4,19E+00	1,49E+01
E+01	1,79E+02	9,38E+01	7,00E+01	1,99E+02	2,01E+02	3,18E+02	3,59E+02	6,52E+02	5,88E+02	2,91E+03
E-02	< 1,62E-01	< 8,15E-02	< 5,85E-02	< 1,81E-01	< 1,40E-01	< 1,70E-01	< 1,75E-01	< 3,34E-01	< 3,64E-01	< 1,85E+00
E-02	< 2,69E-01	< 3,26E-01	< 9,75E-02	< 3,02E-01	4,67E-01	< 4,24E-01	< 4,38E-01	< 8,36E-01	< 9,10E-01	4,38E+00
E-02	< 5,39E-02	< 8,15E-02	< 9,75E-02	< 3,02E-01	< 2,34E-01	< 4,24E-01	< 4,38E-01	< 8,36E-01	9,10E-01	3,44E+00
E-02	6,46E-01	3,18E+00	1,34E+00	1,21E+01	8,41E-01	1,78E+00	1,75E+00	2,01E+00	1,46E+00	2,57E+01
E-02	< 2,69E-01	< 1,36E-01	< 9,75E-02	< 3,02E-01	< 2,34E-01	< 4,24E-01	< 4,38E-01	< 8,36E-01	< 9,10E-01	< 3,96E+00
E+01	1,17E+02	4,27E+01	3,59E+01	1,03E+02	8,50E+01	1,62E+02	2,56E+02	1,92E+02	2,00E+02	1,37E+03
E+01	2,64E+01	1,11E+01	1,56E+01	3,20E+01	3,27E+01	4,15E+01	4,29E+01	7,52E+01	6,73E+01	3,88E+02
E-02	< 1,08E-01	1,09E-01	< 3,90E-02	< 1,21E-01	1,17E-01	< 1,70E-01	1,75E-01	< 3,34E-01	< 3,64E-01	1,79E+00
E+02	5,39E+02	3,02E+02	1,89E+02	3,32E+02	5,61E+02	4,92E+02	7,18E+02	1,22E+03	7,42E+02	5,74E+03
E+00	7,54E+00	1,90E+00	2,92E+00	6,03E+00	3,74E-01	1,19E+01	8,75E+00	2,01E+01	2,18E+01	9,03E+01
E-02	< 5,39E-02	5,44E-02	< 1,95E-02	< 6,03E-02	4,67E-02	4,24E-01	< 8,75E-02	< 1,67E-01	3,64E-01	1,34E+00
E-01	< 1,62E+00	< 8,15E-01	< 5,85E-01	< 1,81E+00	< 1,40E+00	< 2,54E+00	< 2,63E+00	< 5,02E+00	< 5,46E+00	< 2,38E+01
E-02	< 2,69E-01	1,25E+00	< 9,75E-02	2,41E+00	2,80E-01	4,75E+00	6,13E-01	2,17E+00	2,91E+00	1,99E+01
E-02	5,39E-02	< 2,72E-02	< 3,90E-02	< 1,21E-01	< 9,34E-02	< 1,70E-01	< 1,75E-01	< 3,34E-01	< 3,64E-01	1,44E+00

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
В	3857	2984	8084	9008	2487	2746	4788	11592	2765	70353
E+02	3,12E+02	1,22E+02	2,30E+02	5,13E+02	2,16E+02	1,51E+02	4,21E+02	5,56E+02	1,87E+02	4,35E+03
E+00	3,86E-01	8,95E-01	3,23E+00	1,80E+00	4,97E-01	3,84E-01	6,70E-01	2,09E+00	3,32E-01	1,35E+01
E+00	5,48E+01	5,37E+00	2,75E+01	7,21E+00	2,98E+00	2,47E+00	2,87E+00	< 1,16E+00	1,85E+00	1,15E+02
E+03	1,08E+03	6,33E+02	1,94E+03	1,17E+03	4,73E+02	1,32E+03	1,06E+03	1,16E+03	2,65E+02	1,21E+04
	-	-	-	-	-	-	-	-	-	-
E+02	1,16E+02	7,46E+01	< 4,04E+01	1,35E+02	2,49E+01	4,12E+01	1,34E+02	5,80E+01	4,15E+01	1,16E+03
E-01	< 3,86E-01	< 2,98E-01	< 8,08E-01	< 9,01E-00	< 2,49E-01	< 2,75E-01	< 4,79E+00	< 1,16E+00	< 2,77E-01	< 7,04E+00
E+01	3,43E+01	1,79E+00	1,21E+01	4,50E+00	2,49E+00	2,20E+00	1,10E+00	8,11E+00	< 5,53E-01	8,25E+01
E+02	6,52E+01	4,95E+01	9,62E+01	1,44E+02	4,23E+01	3,84E+01	9,58E+01	1,85E+02	5,03E+01	1,57E+03
E+00	< 3,86E+00	< 2,98E+00	< 8,08E+00	< 9,01E+00	< 2,49E+00	< 2,75E+00	< 4,79E+00	< 2,32E+01	< 2,77E+00	< 8,19E+01
E+00	1,12E+00	4,48E-01	8,89E+00	3,87E+00	5,72E-01	1,10E+00	1,63E+00	8,46E+00	1,38E-01	3,98E+01
E+00	6,17E-01	2,09E-01	8,08E+00	1,44E+00	1,27E+00	3,57E-01	2,87E-01	2,55E+00	1,38E-01	1,77E+01
E+02	1,66E+02	1,12E+02	3,06E+02	2,96E+02	8,70E+01	1,04E+02	2,01E+02	4,14E+02	9,68E+01	2,54E+03
E-01	< 1,16E-01	< 8,95E-02	< 2,43E-01	< 2,70E-01	< 7,46E-02	< 8,24E-02	< 1,44E-01	< 3,48E-01	< 8,30E-02	< 1,82E+00
E-01	< 1,93E-01	< 1,49E-01	< 4,04E-01	< 4,50E-01	< 1,24E-01	< 1,37E-01	< 2,39E-01	< 2,32E+00	< 5,53E-01	1,52E+01
E-01	< 1,93E-01	< 1,49E-01	< 8,08E-02	< 9,01E-02	< 2,49E-02	< 2,75E-02	< 4,79E-02	< 1,16E-01	< 2,77E-02	< 1,29E+00
E+00	7,71E-01	< 2,98E-01	4,77E+00	2,25E+00	1,74E-01	1,10E-01	8,14E-01	4,17E+00	5,53E-02	2,26E+01
E-02	< 3,86E-02	< 2,98E-02	< 8,08E-02	< 9,01E-02	< 2,49E-02	< 2,75E-02	< 4,79E-02	< 1,16E-01	< 2,77E-02	< 1,28E+00
E+02	1,54E+01	1,79E+00	3,85E+02	2,48E+02	8,26E+00	1,24E+02	1,46E+02	2,55E+02	5,53E+01	2,45E+03
E+01	3,66E+01	2,27E+01	5,42E+01	4,41E+01	1,52E+01	1,74E+01	4,07E+01	6,14E+01	1,24E+01	4,24E+02
E-01	3,86E-02	< 2,98E-02	2,43E-01	3,33E-01	< 2,49E-02	< 1,10E-01	6,22E-02	2,43E-01	< 2,77E-02	1,70E+00
E+02	6,71E+02	3,82E+02	1,16E+03	1,38E+03	3,38E+02	6,51E+02	5,75E+02	7,42E+02	1,82E+02	8,03E+03
E+01	2,47E+01	3,58E+00	2,18E+01	3,24E+01	9,95E+00	5,49E+00	1,05E+01	< 1,16E+01	1,38E+00	1,54E+02
E-01	< 1,16E-01	< 8,95E-02	< 2,43E-01	4,05E-01	< 7,46E-02	< 8,24E-02	< 1,44E-01	< 3,48E-01	< 8,30E-02	2,11E+00
E-01	< 1,16E+00	< 8,95E-01	< 2,43E+00	< 2,70E+00	< 7,46E-01	< 8,24E-01	< 1,44E+00	< 3,48E+00	< 8,30E-01	< 1,56E+01
E-01	1,93E-01	< 1,19E-01	8,08E-01	< 3,60E-01	< 9,95E-02	< 1,10E-01	< 1,92E-01	< 4,64E-01	1,66E-01	3,65E+00
E-02	< 3,86E-02	< 2,98E-02	< 8,08E-02	< 9,01E-02	< 2,49E-02	< 2,75E-02	< 4,79E-02	< 1,16E-01	< 2,77E-02	< 1,58E+00

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
)	5214	4071	4811	4833	3591	3581	6322	9190	6604	69745
E+02	3,08E+02	5,90E+02	5,15E+02	3,87E+02	5,21E+02	2,11E+02	1,20E+02	2,11E+02	3,14E+02	5,28E+03
E-01	6,26E-01	6,51E-01	9,62E-01	1,06E+00	7,54E-01	-	1,71E+00	3,22E+00	1,12E+00	1,55E+01
E+00	3,23E+00	3,05E+00	8,66E+00	5,03E+00	2,87E+00	1,36E+01	9,48E+00	7,35E+00	1,65E+01	8,45E+01
E+02	2,76E+02	4,40E+02	1,69E+03	5,03E+02	1,12E+03	2,07E+03	2,02E+03	2,04E+03	1,33E+03	1,30E+04
	-	-	-	-	-	-	-	-	-	-
E+01	8,86E+01	1,10E+02	6,25E+01	2,13E+02	1,44E+02	1,61E+02	1,58E+02	9,19E+01	2,31E+02	1,64E+03
E-01	< 5,21E-01	< 4,07E-01	< 4,81E-01	< 4,83E-01	< 3,59E-01	< 3,58E-01	< 6,32E-01	< 9,19E-01	< 6,60E-01	< 6,97E+00
E+00	7,82E+00	4,48E+00	7,22E+00	6,77E+00	6,10E+00	7,88E+00	4,43E+00	1,47E+01	7,92E+00	1,15E+02
E+01	1,04E+02	6,92E+01	9,14E+01	3,38E+01	8,73E+01	8,88E+01	1,06E+02	1,73E+02	1,80E+02	1,30E+03
E+00	< 5,21E+00	< 4,07E+00	< 4,81E+00	< 4,83E+00	< 3,59E+00	< 3,58E+00	< 6,32E+00	< 9,19E+00	< 6,60E+00	< 6,97E+01
E+00	1,04E+00	1,02E+00	1,01E+00	6,28E-01	< 1,80E-01	< 1,79E-01	2,53E+00	1,75E+00	4,62E+00	3,36E+01
E+01	3,28E+00	4,80E+00	2,98E+00	6,28E+00	4,67E+00	2,51E+00	4,43E+00	2,76E+00	6,60E-01	4,87E+01
E+02	1,86E+02	1,48E+02	1,66E+02	2,08E+02	1,53E+02	1,64E+02	1,95E+02	3,94E+02	4,16E+02	2,88E+03
E-02	< 5,21E-02	< 4,07E-02	< 4,81E-02	< 4,83E-02	< 3,59E-02	< 3,58E-02	< 6,32E-02	< 9,19E-02	< 6,60E-02	< 6,97E-01
E-01	3,02E+00	2,56E+00	4,81E-01	4,25E+00	7,18E-02	3,58E-01	8,85E-01	1,38E+00	< 6,60E-01	2,22E+01
E-02	< 5,21E-02	< 4,07E-02	< 4,81E-02	< 4,83E-01	< 3,59E-01	< 3,58E-01	< 6,32E-02	9,19E-02	< 6,60E-02	1,78E+00
E+00	5,74E-01	< 4,07E-01	9,62E-01	1,16E+00	< 7,18E-02	< 7,16E-02	4,24E+00	2,11E+01	3,96E+00	4,53E+01
E-02	< 1,56E-01	< 1,22E-01	< 1,44E-01	< 1,45E-01	< 1,08E-01	< 1,07E-01	< 3,16E-01	< 4,60E-01	< 3,30E-01	< 2,53E+00
E+02	1,19E+02	6,43E+01	7,36E+01	3,96E+01	1,37E+02	1,26E+02	2,09E+02	2,39E+02	3,96E+02	2,44E+03
E+01	2,29E+01	1,75E+01	3,18E+01	4,88E+01	3,95E+01	3,72E+01	6,13E+01	9,28E+01	5,35E+01	5,04E+02
E-01	< 5,21E-01	< 4,07E-01	< 4,81E-01	< 4,83E-01	< 3,59E-01	< 3,58E-01	< 6,32E-01	< 9,19E-01	< 6,60E-01	< 6,97E+00
E+02	4,12E+02	4,56E+02	5,10E+02	3,72E+02	8,47E+02	1,11E+03	8,16E+02	1,00E+03	5,02E+02	7,53E+03
E+00	7,82E+00	9,36E+00	2,21E+01	1,45E+01	1,54E+01	1,00E+01	1,20E+01	9,93E+00	2,25E+01	1,50E+02
E-01	< 5,21E-01	< 4,07E-01	< 4,81E-01	< 4,83E-01	< 3,59E-01	< 3,58E-01	6,32E-02	< 9,19E-02	< 6,60E-02	4,98E+00
E+00	< 2,61E+00	< 2,04E+00	< 2,41E+00	< 2,42E+00	< 1,80E+00	< 1,79E+00	< 3,16E-01	< 4,60E-01	< 3,30E-01	< 2,49E+01
E-02	< 5,21E-02	< 4,07E-02	< 4,81E-02	< 4,83E-02	< 3,59E-02	< 3,58E-02	< 6,32E-02	2,76E-01	< 6,60E-02	8,81E-01
E-02	< 5,21E-02	< 4,07E-02	< 4,81E-02	< 4,83E-02	< 3,59E-02	< 3,58E-02	< 6,32E-02	< 9,19E-02	< 6,60E-02	< 6,97E-01

6	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Cumuls annuels
	5242	1144	2637	6409	4242	4535	5215	8659	8570	62473
E+02	2,41E+02	6,36E+01	1,82E+02	2,94E+02	3,01E+02	3,22E+02	2,61E+02	5,89E+02	7,03E+02	3,55E+03
E+00	8,91E-01	2,29E-01	3,43E-01	1,86E+00	5,51E-01	7,26E-01	5,22E-01	8,66E-01	8,57E-01	1,07E+01
E+00	2,20E+00	1,44E+00	4,32E+00	2,56E+01	1,48E+01	4,54E+00	5,22E+00	3,12E+00	4,63E+00	8,95E+01
E+02	2,10E+02	7,66E+01	4,85E+02	2,24E+03	7,89E+02	4,44E+02	< 5,79E+02	< 1,30E+03	< 1,82E+03	9,64E+03
	-	-	-	-	-	-	-	-	-	-
E+02	1,05E+02	1,72E+01	3,96E+01	1,73E+02	3,82E+01	6,80E+01	1,85E+02	8,66E+01	3,00E+02	1,33E+03
E-01	< 5,24E-01	< 1,14E-01	< 2,64E-01	< 6,41E-01	< 4,24E-01	< 4,54E-01	< 5,22E-01	< 8,66E-01	< 8,57E-01	< 6,25E+00
E+01	1,83E+00	6,41E-01	1,98E+00	1,41E+01	4,41E+00	4,99E+00	5,01E+00	< 1,73E+00	< 1,71E+00	5,20E+01
E+02	2,57E+01	1,73E+01	4,75E+01	8,33E+01	3,78E+01	3,58E+01	1,27E+02	1,39E+02	1,11E+02	9,26E+02
E+00	< 5,24E+00	< 1,14E+00	< 2,64E+00	< 6,41E+00	< 4,24E+00	< 4,54E+00	< 5,22E+00	< 8,66E+00	< 8,57E+00	< 6,25E+01
E+00	5,24E+00	2,75E-01	1,32E+00	3,85E+00	5,51E-01	1,63E+00	8,87E-01	1,21E+01	7,37E+00	5,17E+01
E+00	3,25E+00	1,49E+00	4,09E+00	4,04E+00	9,33E+00	2,18E+00	1,67E+00	6,06E-01	2,49E+00	3,76E+01
E+02	2,85E+02	4,56E+01	1,40E+02	2,24E+02	1,61E+02	1,10E+02	2,00E+02	2,03E+02	3,10E+02	2,11E+03
E-02	< 5,24E-02	< 1,14E-02	< 2,64E-02	< 6,41E-02	1,06E-01	< 4,54E-02	< 5,22E-02	< 8,66E-02	< 8,57E-02	6,59E-01
E-01	< 5,24E-02	1,49E-01	5,01E-01	2,44E+00	4,67E+00	6,80E-01	6,05E+00	8,92E+00	5,57E+00	3,07E+01
E-02	1,57E-01	1,14E-02	< 2,64E-02	< 6,41E-02	< 4,24E-02	< 4,54E-02	5,22E-02	< 8,66E-02	< 8,57E-02	7,30E-01
E+00	2,52E+00	1,03E-01	9,23E-01	2,44E+00	2,97E-01	9,98E-01	< 5,22E-01	9,35E+00	5,23E+00	2,98E+01
E-01	< 1,57E-01	< 3,43E-02	< 7,91E-02	< 1,92E-01	< 1,27E-01	< 1,36E-01	< 1,56E-01	< 2,60E-01	< 2,57E-01	< 1,72E+00
E+01	5,13E+02	4,47E+01	7,17E+01	2,22E+02	6,19E+01	1,60E+02	1,27E+02	3,67E+02	3,47E+02	2,50E+03
E+01	1,99E+01	8,58E+00	1,58E+01	5,38E+01	2,80E+01	1,54E+01	3,81E+01	3,64E+01	3,69E+01	2,98E+02
E-02	< 5,24E-01	< 1,14E-01	< 2,64E-01	< 6,41E-01	< 4,24E-01	< 4,54E-01	< 5,22E-01	< 8,66E-01	< 8,57E-01	4,83E+00
E+02	2,21E+02	1,21E+02	2,69E+02	1,04E+03	6,41E+02	6,49E+02	7,61E+02	7,19E+02	5,14E+02	5,89E+03
E+01	< 9,44E+00	< 2,06E+00	< 4,75E+00	1,15E+01	1,06E+01	6,80E+00	1,46E+01	< 1,56E+01	< 1,54E+01	1,19E+02
E-01	< 2,62E-01	< 5,72E-02	1,58E-01	< 3,20E-01	3,39E-01	4,54E-02	1,15E+00	< 8,66E-01	< 8,57E-01	4,77E+00
E+00	< 1,57E+00	< 3,43E-01	< 7,91E-01	< 1,92E+00	< 2,12E+00	< 2,27E+00	< 2,61E+00	< 4,33E+00	< 4,29E+00	< 2,42E+01
E-01	3,67E-01	< 5,72E-02	1,58E-01	< 3,20E-01	< 2,12E-01	< 2,27E-01	5,22E-01	< 8,66E-02	< 8,57E-02	2,46E+00
	-	-	< 2,64E-02	< 6,41E-02	< 4,24E-02	< 4,54E-02	< 5,22E-02	< 8,66E-02	< 8,57E-02	< 4,03E-01

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
15502	19150	14706	13425	14667	10198	10136	-	-	-
'	ļ	ļ	ı	ļ	ļ	ļ		ļ	
4,51E+01	1,92E+01	2,70E+01	4,40E+01	4,50E+01	1,13E+02	5,00E+01	-	-	-
< 1,00E-01	1,10E-01	7,00E-02	-	-	-				
< 1,00E+00	-	-	-						
1,01E+01	5,60E+00	5,50E+00	9,00E+00	9,20E+00	1,94E+01	1,10E+01	-	-	-
-	-	-	-	-	-	-	-	-	-
1,00E+01	1,00E+01	1,50E+01	1,00E+01	1,20E+01	1,30E+01	1,00E+01	-	-	-
< 1,00E-01	-	-	-						
< 5,00E+00	-	-	-						
2,26E+01	1,26E+01	1,00E+01	1,55E+01	1,34E+01	2,75E+01	2,05E+01	-	-	-
< 1,00E+00	-	-	-						
2,60E-01	3,00E-01	2,00E-01	2,00E-01	1,50E-01	2,00E-01	2,30E-01	-	-	-
< 5,00E-02	5,00E-02	< 5,00E-02	4,00E-02	3,00E-02	< 5,00E-02	< 5,00E-02	-	-	-
3,50E+01	4,17E+01	2,60E+01	3,30E+01	2,40E+01	2,80E+01	2,26E+01	-	-	-
< 1,00E-02	-	-	-						
< 5,00E-02	-	-	-						
< 5,00E-02	< 5,00E-02	< 5,00E-02	3,00E-01	< 5,00E-02	< 5,00E-02	< 5,00E-02	-	-	-
5,00E-02	1,20E-01	4,80E-01	6,00E-02	5,00E-02	2,00E-01	9,00E-02	-	-	-
< 5,00E-02	-	-	-						
4,40E+00	5,30E+00	6,60E+00	4,50E+00	3,50E+00	3,90E+00	3,30E+00	-	-	-
8,00E+00	8,40E+00	6,40E+00	6,30E+00	5,50E+00	6,50E+00	6,50E+00	-	-	-
2,01E-01	1,92E-01	6,00E-02	1,30E-01	3,00E-02	2,00E-02	1,00E-02	-	-	-
2,85E+01	2,52E+01	3,40E+01	2,80E+01	3,00E+01	3,85E+02	3,20E+01	-	-	-
< 5,00E-01	-	-	-						
< 5,00E-02	5,10E-02	< 5,00E-02	1,50E-01	< 5,00E-02	< 5,00E-02	< 5,00E-02	-	-	-
< 5,00E-01	-	-	-						
1,30E-01	9,00E-02	6,00E-02	1,00E-01	< 5,00E-02	6,00E-02	< 5,00E-02	-	-	-
< 5,00E-03	-	-	-						

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
17268	15370	13338	11996	10445	12621	11800	14128	13206	17838
ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	
5,00E+01	4,80E+01	5,50E+01	5,20E+01	5,30E+01	4,50E+01	3,70E+01	4,60E+01	4,82E+01	3,62E+01
< 1,00E-01									
< 1,00E+00									
8,40E+02	9,50E+00	1,10E+01	1,25E+01	1,00E+01	1,00E+01	2,40E+01	8,80E+00	1,15E+01	9,00E+00
-	-	-	-	-	-	-	-	-	-
1,00E+01	1,00E+01	1,00E+01	1,30E+01	1,00E+01	2,00E+01	1,50E+01	1,80E+01	5,00E+00	1,50E+01
< 1,00E-01									
< 5,00E+00									
2,50E+01	1,90E+01	1,90E+01	1,65E+01	1,20E+01	1,40E+01	1,10E+01	1,62E+01	1,45E+01	2,63E+01
< 1,00E+00									
3,00E-01	1,80E+00	2,30E-01	1,40E-01	7,00E-02	1,00E-01	< 5,00E-02	< 5,00E-02	5,90E-02	3,40E-01
6,00E-02	9,00E-02	7,00E-02	5,00E-02	6,00E-02	4,00E-02	6,00E-02	4,20E-02	3,20E-02	7,00E-02
3,70E+01	3,00E+01	3,00E+01	2,50E+01	2,20E+01	2,30E+01	2,20E+01	3,26E+01	2,80E+01	4,50E+01
< 1,00E-02									
< 5,00E-02									
< 5,00E-02									
6,00E-02	1,10E+00	7,00E-02	7,00E-02	8,00E-02	1,20E-01	1,00E-01	7,00E-02	1,40E-01	2,50E+00
< 5,00E-02									
7,80E+00	6,50E+00	4,20E+00	5,60E+00	3,60E+00	6,30E+00	4,20E+00	3,90E+00	3,70E+00	1,93E+01
8,00E+00	6,50E+00	8,30E+00	6,50E+00	6,50E+00	5,50E+00	5,60E+00	6,90E+00	6,50E+00	7,50E+00
3,20E-01	9,00E-02	8,00E-02	4,00E-02	3,00E-02	2,00E-02	1,00E-02	2,00E-02	1,30E-02	1,00E-01
2,90E+02	3,00E+01	3,60E+01	3,35E+01	3,00E+01	2,70E+01	2,80E+01	2,85E+01	2,84E+01	3,00E+02
< 5,00E-01									
5,00E-02	7,00E-02	< 5,00E-02	< 5,00E-02	6,00E-02	< 5,00E-02				
< 5,00E-01									
1,50E-01	1,30E-01	9,00E-02	< 5,00E-02	6,00E-02	6,00E-02	6,00E-02	5,00E-02	6,00E-02	1,10E-01
< 5,00E-03									

Mars	Avril	Mai	Juin	Juillet	Août	Septembre Octobre Novembre		Décembre	
12433	16806	11989	12915	12921	11237	14861	18515	15656	18750
	ı	ı	ı	!	!	'	ļ	ı	
4,80E+01	4,20E+01	8,30E+01	4,50E+01	4,00E+01	4,00E+01	3,70E+01	3,50E+01	4,00E+01	4,50E+01
< 1,00E-01	1,60E-01	< 1,00E-01	1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	1,00E-01	< 1,00E-01
< 1,00E+00	< 1,00E+00	< 5,00E-01	< 5,00E-01	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00
1,00E+01	1,40E+01	1,50E+01	1,50E+01	1,00E+01	1,15E+01	1,46E+03	8,00E+00	1,00E+01	1,30E+01
-	-	-	-	-	-	-	-	-	-
2,00E+01	7,00E+01	1,00E+01	1,00E+01	1,00E+01	3,50E+01	2,50E+01	1,00E+01	1,00E+01	2,00E+01
< 1,00E-01	< 1,00E+00	< 1,00E+00	< 1,00E-01						
< 5,00E+00	< 5,00E+00	< 5,00E+00	5,00E+00	< 5,00E+00	< 5,00E+00	< 5,00E+00	< 5,00E+00	< 5,00E+00	< 5,00E+00
2,30E+01	3,00E+01	2,20E+01	1,50E+01	1,20E+01	8,50E+00	1,40E+01	2,80E+01	3,30E+01	3,50E+01
< 1,00E+00	< 1,00E+00	1,30E+00	< 1,00E+00						
1,90E-01	3,50E-01	1,00E-01	2,60E-01	2,90E-01	8,00E-02	2,00E-01	3,50E-01	1,80E-01	2,30E-01
3,00E-02	1,00E-01	3,40E-02	8,00E-02	3,00E-02	4,00E-02	5,00E-02	9,00E-02	4,00E-02	6,00E-02
3,30E+01	4,00E+01	2,70E+01	2,60E+01	2,10E+01	2,40E+01	2,30E+01	4,50E+01	4,80E+01	5,00E+01
< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-03	< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
6,00E-02	1,10E-01	6,00E-02	7,00E-02	8,00E-02	9,00E-02	8,00E-02	7,00E-02	7,00E-02	6,00E-02
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
3,80E+00	5,00E+00	4,30E+00	6,00E+00	3,60E+00	2,40E+00	6,50E+00	4,00E+00	6,00E+00	4,50E+00
7,20E+00	7,30E+00	6,60E+00	7,00E+00	5,60E+00	5,70E+00	4,20E+00	8,50E+00	9,60E+00	9,80E+00
2,20E-01	4,80E-01	2,10E-01	1,20E-01	5,00E-02	1,00E-02	1,00E-02	1,50E-01	2,50E-01	3,00E-01
3,00E+01	2,80E+01	3,60E+01	4,00E+01	3,00E+01	2,80E+01	5,50E+02	2,50E+01	2,80E+01	3,00E+01
< 5,00E-01	< 5,00E-01	< 5,00E-01	5,70E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01	1,50E+00	< 5,00E-01	< 5,00E-01
6,00E-02	1,00E-01	5,40E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	1,10E-01	7,00E-02
< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01						
1,60E-01	2,00E-01	1,80E-01	1,30E-01	7,00E-02	< 5,00E-02	9,00E-02	1,00E-01	2,00E-01	3,00E-01
< 5,00E-03	< 5,00E-03	< 5,00E-03	< 5,00E-03						

Mars	Avril	Mai	Juin	Juillet	Août	Septembre Octobre Novembre		Décembre	
19179	13404	15107	19469	16559	12222	6261	4426	6363	2949
	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	
6,20E+01	4,70E+01	7,00E+00	4,70E+01	7,30E+01	4,40E+01	4,70E+01	7,30E+01	3,10E+01	3,60E+01
1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	1,00E-01	< 1,00E-01	1,10E-01	9,00E-02	< 1,00E-01
< 1,00E+00	4,30E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00				
3,30E+01	1,20E+01	3,00E+00	1,20E+01	3,70E+01	9,60E+00	1,00E+01	1,50E+00	1,40E+01	9,10E+00
-	-	-	-	-	-	-	-	-	-
5,00E+00	1,00E+01	1,00E+01	5,00E+00	1,00E+01	2,00E+01	1,00E+01	1,30E+01	1,80E+01	1,00E+01
< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01						
< 5,00E+00	< 5,00E+00	< 5,00E+00	< 5,00E+00						
3,00E+01	1,30E+01	3,50E+00	1,50E+01	1,80E+01	1,10E+01	1,10E+01	4,30E+01	2,55E+01	3,60E+01
3,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00					
< 5,00E-02	5,00E-02	3,00E-01	< 5,00E-02	5,00E-01	< 5,00E-02	1,00E-01	< 5,00E-02	2,60E-01	4,60E-01
3,00E-02	< 3,00E-02	4,00E-02	1,10E-01	1,30E-01	5,00E-02	6,00E-02	6,60E-02	6,60E-02	4,60E-02
5,00E+01	3,00E+01	3,10E+01	3,10E+01	3,30E+01	2,55E+01	2,10E+01	3,40E+01	4,24E+01	4,33E+01
< 1,00E-02	< 1,00E-02	1,20E-02	< 1,00E-02						
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
6,00E-02	1,10E-01	1,00E-01	< 5,00E-02	6,00E-02	7,00E-02	7,00E-02	< 5,00E-02	5,00E-02	< 5,00E-02
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
7,00E+00	5,00E+00	7,00E+00	3,00E+00	6,00E+00	5,00E+00	3,70E+00	6,50E+00	6,10E+00	6,50E+00
9,00E+00	8,40E+00	6,00E+00	5,50E+00	6,80E+00	5,60E+00	6,00E+00	7,20E+00	8,30E+00	8,60E+00
2,30E-01	2,50E-02	3,00E-02	3,00E-02	2,00E-02	8,00E-03	7,00E-03	1,70E-01	4,70E-01	5,30E-01
3,00E+01	3,00E+01	2,80E+01	3,40E+01	4,60E+01	3,00E+01	3,00E+01	2,90E+01	2,70E+01	2,70E+01
< 5,00E-01	< 5,00E-02	< 5,00E-01	< 5,00E-01	< 5,00E-01	9,00E-01	< 5,00E-01	< 5,00E-01	9,00E-01	< 5,00E-01
6,00E-02	< 5,00E-02	< 5,00E-02	9,00E-02	9,00E-02					
< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01						
2,00E-01	9,00E-02	< 5,00E-02	9,00E-02	< 5,00E-02	< 5,00E-02	5,00E-02	9,00E-02	1,80E-01	3,00E-01
< 5,00E-03	< 5,00E-03	< 5,00E-03	< 5,00E-03						

Mars	Avril	Mai	Juin	Juillet	Août	Septembre Octobre Novembre		Décembre	
14356	12364	18970	13668	10611	14885	13070	20326	22677	20315
'		ļ	ı	ļ	!	ļ	ļ	ı	
5,30E+01	5,25E+01	5,20E+01	2,50E+01	2,90E+01	3,40E+01	4,30E+01	2,00E+01	4,80E+01	4,00E+01
2,00E+00	< 1,00E-01	< 1,00E-01	1,50E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	1,00E-01	1,00E-01
< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00						
1,70E+01	9,00E+00	1,20E+01	7,00E+00	1,40E+01	2,20E+01	8,00E+00	1,00E+01	3,40E+01	2,00E+01
-	-	-	-	-	-	-	-	-	-
1,00E+01	< 5,00E+00	2-00E+01	1,50E+01						
< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01						
< 5,00E+00	< 5,00E+00	< 5,00E+00	< 5,00E+00						
1,85E+01	1,07E+01	1,65E+01	4,30E+00	4,00E+00	1,20E+01	8,00E+00	7,00E+00	1,20E+02	9,20E+01
< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00						
1,60E-01	< 5,00E-02	< 1,00E+00	8,00E-02	1,00E-01	3,00E-01	< 5,00E-02	1,20E-01	2,10E-01	9,00E-02
7,00E-02	6,00E-02	5,00E-02	5,00E-02	8,00E-02	5,00E-02	8,00E-02	5,00E-02	6,00E-02	4,00E-02
3,50E+01	3,86E+01	3,30E+01	2,10E+01	2,20E+01	3,50E+01	4,00E+01	2,20E+01	2,60E+01	4,50E+01
< 1,00E-02	1,00E-02	5,00E-02	1,00E-01	< 1,00E-02	< 1,00E-02	7,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	6,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02
< 5,00E-02	7,00E-02	1,00E+00	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02
2,40E-01	1,60E+00	3,00E+00	8,00E-01	< 5,00E-02	1,40E-01	< 5,00E-02	3,50E-01	< 5,00E-02	5,00E-02
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	8,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02
5,40E+00	6,10E+00	4,50E+00	6,00E+00	1,40E+01	9,00E+00	5,00E+00	6,50E+00	8,00E+00	5,70E+00
6,30E+00	6,00E+00	1,12E+01	6,40E+00	6,00E+00	5,05E+02	6,70E+00	4,80E+00	7,50E+00	9,10E+00
< 5,00E-03	4,00E-02	< 5,00E-03	4,00E-01	< 5,00E-03	< 5,00E-02	2,00E-02	9,00E-02	1,00E-02	3,00E-01
3,90E+01	3,80E+01	2,50E+01	3,60E+01	3,70E+01	2,90E+01	3,00E+01	2,30E+01	3,00E+01	2,50E+01
9,00E-01	< 5,00E-01	< 5,00E-01	6,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01
< 5,00E-02	< 5,00E-02	< 5,00E-02	5,00E-02						
< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01						
< 5,00E-02	5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	2,00E-01				
< 5,00E-03	1,50E-02	< 5,00E-03	< 5,00E-03	< 5,00E-03					

Mars	Avril	Mai	Juin	Juillet	Août	Septembre Octobre Novembre		Décembre	
16590	10555	8870	8308	7704	12391	14667	15833	9493	18008
!	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	
6,70E+01	7,00E+01	5,50E+01	5,00E+01	5,00E+01	4,50E+01	3,86E+01	3,50E+01	9,50E+01	4,30E+01
< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01						
< 1,00E+00	4,70E+00	< 1,00E+00	< 1,00E+00	4,00E+00	< 1,00E+00				
9,00E+00	1,25E+01	6,50E+00	2,80E+01	1,30E+01	1,60E+02	4,00E+01	1,80E+01	3,50E+01	1,70E+01
-	-	-	-	-	-	-	-	-	-
1,00E+01	1,00E+01	2,00E+01	1,00E+01	6,00E+01	4,00E+00	1,50E+01	1,50E+01	< 1,00E+01	1,00E+01
< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01						
< 5,00E+00	< 5,00E+00	< 5,00E+00	< 5,00E+00						
1,10E+01	7,40E+01	5,00E+00	2,00E+00	8,00E+00	6,30E+00	1,45E+01	4,20E+00	1,04E+01	2,30E+01
< 5,00E+00	< 5,00E+00	< 5,00E+00	< 5,00E+00						
< 2,00E-01	3,00E-01	1,40E+00	3,00E-01	< 5,00E-02	< 5,00E-02	1,60E-01	< 5,00E-02	< 5,00E-02	2,40E-01
1,10E-01	4,00E-02	6,00E-02	9,00E-02	5,00E-02	6,00E-02	1,00E-01	6,00E-02	9,00E-02	5,00E-02
3,80E+01	2,05E+01	3,40E+01	3,30E+01	3,00E+01	2,32E+01	3,30E+01	2,87E+01	3,00E+01	3,70E+01
2,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	1,50E-02	< 5,00E-02	1,00E-02	< 5,00E-02	< 1,00E-02	< 1,00E-02
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
7,00E-02	2,00E-01	1,20E+00	9,00E-01	7,00E-02	1,30E-01	5,00E-01	1,00E-01	7,00E-02	1,40E-01
< 5,00E-02	< 5,00E-02	< 5,00E-02	5,00E-02						
9,00E+00	8,20E+00	1,50E+01	6,60E+00	4,70E+00	7,70E+00	8,30E+00	5,20E+00	5,20E+00	7,00E+00
1,02E+01	4,00E+00	9,50E+00	6,20E+00	6,00E+00	4,30E+00	5,20E+00	5,10E+00	5,50E+00	5,90E+00
< 2,00E-02	< 2,00E-02	5,00E-02	< 5,00E-03	2,00E-02	< 2,00E-02	2,00E-02	< 2,00E-02	5,00E-03	7,00E-02
3,90E+01	3,70E+01	7,00E+01	3,20E+01	3,10E+01	8,80E+01	2,77E+01	3,00E+01	3,30E+01	1,00E+01
< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-02	5,00E-01	2,80E-01	2,60E-01	1,40E-01	< 5,00E-01	7,00E-01
7,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02					
< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01						
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
< 5,00E-03	< 5,00E-02	< 5,00E-03	< 5,00E-03	3,00E-02					

Mars	Avril	Mai	Juin	Juillet	Août	Septembre Octobre Novembre		Décembre	
12172	12431	12479	6411	7228	11867	12242	12208	19231	22268
'	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	
5,30E+01	1,84E+02	1,40E+02	1,07E+02	1,45E+02	5,50E+01	4,00E+01	3,70E+01	4,00E+01	3,70E+01
< 1,00E-01	< 1,00-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01				
< 1,00E+00	< 1,00E+00	< 1,00E+00	2,00E+00	< 5,00E-01	< 1,00E+00	< 1,00E+00	< 1,00E+00	2,60E+00	< 1,00E+00
1,00E+01	9,00E+00	1,00E+01	1,40E+01	1,50E+01	2,20E+01	2,40E+01	1,70E+01	2,00E+01	7,00E+00
-	-	-	-	-	-	-	-	-	-
2,00E+01	6,50E+01	1,00E+01	1,00E+01	1,50E+01	1,00E+01	1,00E+01	1,50E+01	1,50E+01	1,00E+01
< 1,00E+00	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01					
< 5,00E-01	< 5,00E+00	< 5,00E+00	< 5,00E+00	< 5,00E+00	< 5,00E+00				
1,10E+01	1,10E+01	1,50E+01	1,10E+01	1,70E+01	1,40E+01	1,20E+01	1,30E+01	1,70E+01	1,20E+01
< 5,00E+00	< 5,00E+00	< 5,00E+00	< 5,00E+00						
2,00E-01	3,00E-01	5,00E+00	8,00E-01	2,00E-01	2,00E-01	5,00E-01	3,00E-01	< 2,00E-01	2,00E-01
4,00E-02	3,00E-02	2,00E-02	5,00E-02	5,00E-02	3,00E-02	8,00E-02	< 5,00E-03	5,00E-02	4,00E-02
3,40E+01	3,00E+01	3,00E+01	3,07E+01	3,00E+01	3,00E+01	3,80E+01	3,30E+01	3,50E+01	2,60E+01
< 2,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02					
< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
2,00E-01	4,00E-01	3,00E+00	5,00E-01	1,50E-01	1,00E-01	5,00E-01	3,00E-01	6,00E-02	2,00E-01
< 5,00E-02	< 5,00E-03	1,00E+00	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02
1,10E+01	1,50E+01	2,00E+01	9,50E+00	1,40E+01	1,40E+01	1,10E+01	1,49E+01	1,40E+01	8,40E+00
4,50E+00	8,00E+00	9,30E+00	8,80E+00	9,60E+00	5,00E+00	4,60E+00	3,60E+00	4,30E+00	3,80E+00
2,00E-02	1,50E-02	< 5,00E-03	< 5,00E-03	3,00E-02	5,00E-02	7,00E-02	3,00E-02	2,00E-02	2,00E-02
2,90E+01	7,00E+01	9,50E+01	6,20E+01	9,00E+01	4,00E+01	3,00E+01	3,00E+01	3,50E+01	2,80E+01
< 4,50E-01	< 4,50E-01	< 4,50E-01	5,00E-01	3,90E+00	< 5,00E-01	< 5,00E-01	< 5,00E-01	5,00E-01	7,00E-01
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-01	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02
< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01						
< 5,00E-02	< 5,00E-02	8,00E-02	< 5,00E-02						
1,50E-02	< 5,00E-03	< 5,00E-03	< 5,00E-03	< 5,00E-03					

Mars	Avril	Mai	Juin	Juillet	Août	Septembre Octobre Novembre		Décembre	
9233	14056	8330	15573	10678	10437	15576	14311	10098	22559
'	'	'	'	'	'		'	'	
4,65E+01	6,00E+01	5,50E+01	4,70E+01	3,65E+01	3,70E+01	1,60E+01	3,75E+01	3,50E+01	4,00E+01
< 1,00E-01	1,00E-01	1,00E-01	< 1,00E-01	< 1,00E-01	1,10E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01
2,00E+00	1,15E+01	6,50E+00	5,10E+00	2,30E+00	1,13E+01	2,60E+01	7,10E+01	3,40E+01	5,00E+01
1,50E+01	9,00E+01	1,17E+02	1,87E+02	1,31E+02	1,20E+02	1,60E+01	2,50E+01	4,30E+01	1,40E+01
-	-	-	-	-	-	-	-	-	-
1,00E+01	1,50E+01	2,00E+01	5,00E+00	1,20E+01	1,50E+01	1,00E+01	2,00E+01	1,80E+01	1,00E+01
3,60E+01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01					
2,00E-01	< 5,00E-01	3,00E-01	4,30E-01	4,00E-01	< 1,00E+00	1,00E+00	4,00E+00	< 1,00E+00	< 5,00E-01
1,65E+01	4,30E+01	7,30E+00	9,70E+00	1,02E+01	1,12E+01	6,30E+01	1,00E+01	1,20E+01	1,40E+01
< 5,00E+00	< 5,00E+00	< 1,00E+00	1,00E-01	2,30E+00	< 1,00E+00	< 5,00E+00	< 5,00E+00	< 5,00E+00	< 5,00E+00
2,00E-01	3,00E-01	8,00E-01	< 3,00E-01	< 3,00E-01	< 3,00E-01	< 3,00E-01	< 3,00E-01	< 5,00E-02	4,00E-01
< 5,00E-01	< 5,00E-01	< 5,00E-01	3,00E-02	< 3,00E-02	< 3,00E-01	< 3,00E-01	< 3,00E-01	< 5,00E-03	< 5,00E-02
1,77E+01	2,40E+01	2,70E+01	2,50E+01	2,47E+01	3,02E+01	2,49E+01	3,00E+01	5,00E+01	3,27E+01
< 2,00E-02	< 2,00E-02	< 2,00E-02	< 3,00E-01	< 3,00E-01	< 3,00E-01	< 3,00E-01	< 3,00E-01	< 1,00E-02	< 1,00E-02
< 1,00E+00	< 1,00E+00	< 1,00E+00	< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01	< 5,00E-01
< 5,00E-01	< 5,00E-01	< 5,00E-01	< 3,00E-01	< 3,00E-01	< 3,00E-01	< 3,00E-01	< 3,00E-01	< 5,00E-02	< 5,00E-02
< 5,00E-01	< 5,00E-01	< 5,00E-01	2,60E-01	< 5,00E-02	1,10E-01	3,00E-01	1,20E-01	6,90E+01	2,00E-01
< 1,00E-01	3,70E+00	< 5,00E-01	< 5,00E-01	< 5,00E-02	< 5,00E-02				
7,00E+00	2,27E+01	1,03E+01	2,80E+01	1,30E+01	2,50E+01	2,35E+01	1,20E+01	1,30E+01	1,60E+01
2,80E+00	3,60E+00	4,10E+00	2,50E+00	2,80E+00	2,40E+00	2,40E+00	3,20E+00	8,80E+00	4,20E+00
< 2,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-03	< 2,00E-03	4,00E-03	1,00E-02	1,00E-02	2,00E-02	< 2,00E-02
3,60E+01	5,70E+01	4,96E+01	7,30E+01	6,90E+01	8,00E+01	3,55E+01	3,00E+01	4,10E+01	3,26E+01
< 1,00E-01	1,40E+00	< 1,00E+00	< 1,00E+00	9,00E-01	9,00E-01	2,00E-01	1,00E-01	1,80E+00	< 5,00E-01
< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E+00	4,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 5,00E-02	7,00E-02
< 1,00E-01	< 3,00E-01	< 3,00E-01	< 1,50E+01	< 1,50E+01	< 1,50E+01	< 1,50E+01	< 1,50E+01	< 5,00E-01	5,00E-01
< 1,00E-01	< 1,00E-01	< 1,00E-01	< 2,00E+00	< 1,00E+01	< 1,00E+01	< 1,00E+01	< 1,00E+01	< 5,00E-02	< 5,00E-02
< 2,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-03	< 2,00E-03	< 2,00E-03	< 2,00E-03	< 2,00E-03	< 5,00E-03	< 5,00E-03

Mars	Avril	Mai	Juin	Juillet	Août	Septembre Octobre Novembre		Décembre	
1213	5385	2718	1949	6033	4672	8476	8750	16719	18198
!	ļ	ļ	ļ	ļ		ļ	ļ	ļ	
1,45E+02	5,00E+01	6,50E+01	5,30E+01	4,00E+01	6,00E+01	5,40E+01	5,50E+01	5,70E+01	4,99E+01
1,50E-01	1,30E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	1,30E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01
< 1,00E-01	< 1,00E-01	< 1,00E-01	1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00	1,60E+00	< 1,00E+00
6,00E+02	1,14E+02	1,70E+02	1,40E+02	9,00E+01	1,90E+02	8,52E+01	1,53E+02	1,20E+01	1,64E+01
-	-	-	-	-	-	-	-	-	-
2,00E+01	2,50E+01	1,60E+01	2,50E+01	1,00E+01	4,00E+01	2,00E+01	3,00E+01	2,00E+01	2,10E+01
< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01						
< 2,00E-01	< 2,00E-01	< 2,00E-01	< 5,00E-01						
2,50E+01	1,50E+01	1,70E+01	2,30E+01	2,00E+01	2,00E+01	1,30E+01	2,00E+01	1,50E+01	1,25E+01
< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00						
1,30E-01	2,50E-01	1,60E+00	1,23E+00	2,50E+00	3,20E-01	2,00E-01	3,00E-01	< 2,00E-01	< 2,00E-01
7,00E-02	5,00E-02	1,30E-01	5,00E-02	6,00E-02	5,00E-02	1,20E-01	2,00E-01	2,00E-01	< 2,30E-01
5,67E+01	3,33E+01	3,45E+01	3,59E+01	3,30E+01	4,30E+01	3,75E+01	4,10E+01	3,90E+01-	3,23E+01
< 3,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02					
< 5,00E-02	< 5,00E-02	< 1,20E-01	< 5,00E-02	< 5,00E-02	1,00E-01	< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02
< 1,00E-02	< 1,00E-02	< 3,00E-02	< 5,00E-02	< 5,00E-02	< 5,60E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	5,00E-02
6,00E-02	1,20E-01	1,17E+00	6,90E-01	2,00E+00	1,80E-01	2,10E-01	2,00E-01	1,20E-01	8,00E-02
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
4,30E+01	2,18E+01	1,57E+01	1,84E+01	1,70E+01	1,82E+01	1,91E+01	2,92E+01	1,15E+01	1,10E+01
1,53E+01	4,90E+00	4,10E+00	8,00E+00	5,30E+00	7,00E+00	4,90E+00	4,90E+00	4,50E+00	3,70E+00
< 4,00E-02	< 2,00E-02	4,00E-02	< 2,00E-02	< 2,00E-02	2,50E-02	< 2,00E-02	2,00E-02	< 2,00E-02	< 2,00E-02
2,74E+02	1,00E+02	1,11E+02	9,70E+01	5,50E+01	1,20E+02	5,80E+01	8,20E+01	7,30E+01	4,08E+01
1,30E+00	1,40E+00	7,00E-01	1,50E+00	1,00E+00	8,00E-02	1,40E+00	1,00E+00	1,20E+00	1,20E+00
< 1,00E-02	< 1,00E-02	2,00E-02	< 1,00E-02	< 1,00E-02	1,00E-02	5,00E-02	< 1,00E-02	< 1,00E-02	2,00E-02
< 3,00E-01	< 3,00E-01	< 3,00E-01	< 3,00E-01						
< 5,00E-02	< 5,00E-02	4,60E-01	< 5,00E-02	4,00E-01	6,00E-02	5,60E-01	7,00E-02	1,30E-01	1,60E-01
< 1,00E-02	1,00E-02	< 1,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02	< 2,00E-02

Mars	Avril	Mai	Juin	Juillet	Août	Septembre Octobre Novemb		Novembre	Décembre
7728	3857	2984	8084	9008	2487	2746	4788	11592	2765
'	ı	ı	ı	ı	ı	ı	ı	ı	
6,40E+01	8,10E+01	4,10E+01	2,85E+01	5,70E+01	8,70E+01	5,50E+01	8,80E+01	4,80E+01	6,77E+01
1,60E-01	1,00E-01	3,00E-01	4,00E-01	2,00E-01	2,00E-01	1,40E-01	1,40E-01	1,80E-01	1,20E-01
3,30E-01	1,42E+01	1,80E+00	3,40E+00	8,00E-01	1,20E+00	9,00E-01	6,00E-01	< 1,00E-01	6,70E-01
1,70E+02	2,81E+02	2,12E+02	2,40E+02	1,30E+02	1,90E+02	4,80E+02	2,21E+02	1,00E+02	9,60E+01
-	-	-	-	-	-	-	-	-	-
3,00E+01	3,00E+01	2,50E+01	< 5,00E+00	1,50E+01	1,00E+01	1,50E+01	2,80E+01	5,00E+00	1,50E+01
< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01						
1,30E+00	8,90E+00	6,00E-01	1,50E+00	5,00E-01	1,00E+00	8,00E-01	2,30E-01	7,00E-01	< 2,00E-01
2,80E+01	1,69E+01	1,66E+01	1,19E+01	1,60E+01	1,70E+01	1,40E+01	2,00E+01	1,60E+01	1,82E+01
< 1,00E+00	< 1,00E+00	< 2,00E+00	< 1,00E+00						
6,70E-01	2,90E-01	1,50E-01	1,10E+00	4,30E-01	2,30E-01	4,00E-01	3,40E-01	7,30E-01	5,00E-02
1,80E-01	1,60E-01	7,00E-02	1,00E+00	1,60E-01	5,10E-01	1,30E-01	6,00E-02	2,20E-01	5,00E-02
3,90E+01	4,30E+01	3,74E+01	3,78E+01	3,29E+01	3,50E+01	3,80E+01	4,20E+01	3,57E+01	3,50E+01
< 3,00E-02	< 3,00E-02	< 3,00E-02	< 3,00E-02						
< 5,00E-02	< 5,00E-02	< 2,00E-01	< 2,00E-01						
< 5,00E-02	< 5,00E-02	< 5,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02
3,10E-01	2,00E-01	< 1,00E-01	5,90E-01	2,50E-01	7,00E-02	4,00E-02	1,70E-01	3,60E-01	2,00E-02
< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02						
4,80E+01	4,00E+00	6,00E-01	4,76E+01	2,75E+01	3,32E+00	4,50E+01	3,05E+01	2,20E+01	2,00E+01
5,90E+00	9,50E+00	7,60E+00	6,70E+00	4,90E+00	6,10E+00	6,35E+00	8,50E+00	5,30E+00	430E+00
2,00E-02	1,00E-02	< 1,00E-02	3,00E-02	3,70E-02	< 1,00E-02	< 4,00E-02	1,30E-02	2,10E-02	< 1,00E-02
9,60E+01	1,74E+02	1,28E+02	1,44E+02	1,53E+02	1,36E+02	2,37E+02	1,20E+02	6,40E+01	6,60E+01
1,60E+00	6,40E+00	1,20E+00	2,70E+00	3,60E+00	4,00E+00	2,00E+00	2,20E+00	< 1,00E+00	5,00E-01
< 5,00E-02	< 3,00E-02	< 3,00E-02	< 3,00E-02	4,50E-02	< 3,00E-02	< 3,00E-02	< 3,00E-02	< 3,00E-02	< 3,00E-02
< 5,00E-02	< 3,00E-01	< 3,00E-01	< 3,00E-01	< 3,00E-01					
< 5,00E-02	5,00E-02	< 4,00E-02	1,00E-01	< 4,00E-02	< 4,00E-02	< 4,00E-02	< 4,00E-02	< 4,00E-02	6,00E-02
< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02						

Mars	Avril	Mai	Juin	Juillet	Août	Septembre Octobre Novembre		Décembre	
2349	5214	4071	4811	4833	3591	3581	6322	9190	6604
'	ļ	ļ	ı	ļ	ļ	l l	ļ	ļ	
8,70E+01	5,90E+01	1,45E+02	1,07E+02	8,00E+01	1,45E+02	5,90E+01	1,90E+01	2,30E+01	4,75E+01
1,20E-01	1,20E-01	1,60E-01	2,00E-01	2,20E-01	2,10E-01	-	2,70E-01	3,50E-01	1,70E-01
1,10E+00	6,20E-01	7,50E-01	1,80E±00	1,04E+00	8,00E-01	3,80E+00	1,50E+00	8,00E-01	2,50E+00
2,50E+02	5,30E+01	1,08E+02	3,52E+02	1,04E+02	3,12E+02	5,77E+02	3,20E+02	2,22E+02	2,02E+02
-	-	-	-	-	-	-	-	-	-
3,00E+01	1,70E+01	2,70E+01	1,30E+01	4,40E+01	4,00E+01	4,50E+01	2,50E+01	1,00E+01	3,50E+01
< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01						
1,40E+00	1,50E+00	1,10E+00	1,50E+00	1,40E+00	1,70E+00	2,20E+00	7,00E-01	1,60E+00	1,20E+00
1,20E+01	2,00E+01	1,70E+01	1,90E+01	7,00E+00	2,43E+01	2,48E+01	1,67E+01	1,88E+01	2,72E+01
< 1,00E+00	< 1,00E+00	< 1,00E+00	< 1,00E+00						
2,56E+00	2,00E-01	2,50E-01	2,10E-01	1,30E-01	< 5,00E-02	< 5,00E-02	4,00E-01	1,90E-01	7,00E-01
4,39E+00	6,30E-01	1,18E+00	6,20E-01	1,30E+00	1,30E+00	7,00E-01	7,00E-01	3,00E-01	1,00E-01
4,49E+01	3,56E+01	3,63E+01	3,45E+01	4,30E+01	4,27E+01	4,58E+01	3,09E+01	4,29E+01	6,30E+01
< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02						
3,20E-01	5,80E-01	6,30E-01	1,00E-01	8,80E-01	2,00E-02	1,00E-01	1,40E-01	1,50E-01	< 1,00E-01
< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-02	1,00E-02	< 1,00E-02
1,73E+00	1,10E-01	< 1,00E-01	2,00E-01	2,40E-01	< 2,00E-02	< 2,00E-02	6,70E-01	2,30E+00	6,00E-01
< 3,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02						
4,86E+01	2,29E+01	1,58E+01	1,53E+01	8,20E+00	3,82E+01	3,52E+01	3,30E+01	2,60E+01	6,00E+01
5,92E+00	4,40E+00	4,30E+00	6,60E+00	1,01E+01	1,10E+01	1,04E+01	9,70E+00	1,01E+01	8,10E+00
< 1,00E-01	< 1,00E-01	< 1,00E-01	< 1,00E-01						
1,91E+02	7,90E+01	1,12E+02	1,06E+02	7,70E+01	2,36E+02	3,11E+02	1,29E+02	1,09E+02	7,60E+01
3,30E+00	1,50E+00	2,30E+00	4,60E+00	3,00E+00	4,30E+00	2,80E+00	1,90E+00	1,08E+00	3,40E+00
< 1,00E-01	1,00E-02	< 1,00E-02	< 1,00E-02						
< 5,00E-01	< 5,00E-02	< 5,00E-02	< 5,00E-02						
< 1,00E-02	< 1,00E-02	3,00E-02	< 1,00E-02						
< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02						

Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre
8100	5242	1144	2637	6409	4242	4535	5215	8659	8570
!	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	
3,70E+01	4,60E+01	5,56E+01	6,90E+01	4,58E+01	7,10E+01	7,10E+01	5,00E+01	6,80E+01	8,20E+01
1,50E-01	1,70E-01	2,00E-01	1,30E-01	2,90E-01	1,30E-01	1,60E-01	1,00E-01	1,00E-01	1,00E-01
5,80E-01	4,20E-01	1,26E+00	1,64E+00	4,00E+00	3,50E+00	1,00E+00	1,00E+00	3,60E-01	5,40E-01
1,14E+02	4,00E+01	6,70E+01	1,84E+02	3,50E+02	1,86E+02	9,80E+01	< 1,11E+02	< 1,50E+02	< 2,12E+02
-	-	-	-	-	-	-	-	-	-
1,70E+01	2,00E+01	1,50E+01	1,50E+01	2,70E+01	9,00E+00	1,50E+01	3,55E+01	1,00E+01	3,50E+01
< 1,00E-01									
1,40E+00	3,50E-01	5,60E-01	7,50E-01	2,20E+00	1,04E+00	1,10E+00	9,60E-01	< 2,00E-01	< 2,00E-01
2,08E+01	4,90E+00	1,51E+01	1,80E+01	1,30E+01	8,90E+00	7,90E+00	2,43E+01	1,60E+01	1,30E+01
< 1,00E+00									
1,00E+00	1,00E+00	2,40E-01	5,00E-01	6,00E-01	1,30E-01	3,60E-01	1,70E-01	1,40E+00	8,60E-01
1,60E-01	6,20E-01	1,30E+00	1,55E+00	6,30E-01	2,20E+00	4,80E-01	3,20E-01	7,00E-02	2,90E-01
2,64E+01	5,44E+01	3,99E+01	5,30E+01	3,50E+01	3,80E+01	2,42E+01	3,83E+01	2,34E+01	3,62E+01
< 1,00E-02	2,50E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02				
2,00E-02	< 1,00E-02	1,30E-01	1,90E-01	3,80E-01	1,10E+00	1,50E-01	1,16E+00	1,03E+00	6,50E-01
1,10E-02	3,00E-02	1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	< 1,00E-02	1,00E-02	< 1,00E-02	< 1,00E-02
4,80E-01	4,80E-01	9,00E-02	3,50E-01	3,80E-01	7,00E-02	2,20E-01	< 1,00E-01	1,08E+00	6,10E-01
< 3,00E-02									
1,02E+01	9,78E+01	3,91E+01	2,72E+01	3,46E+01	1,46E+01	3,53E+01	2,44E+01	4,24E+01	4,05E+01
2,80E+00	3,80E+00	7,50E+00	6,00E+00	8,40E+00	6,60E+00	3,40E+00	7,30E+00	4,20E+00	4,30E+00
< 1,00E-02	< 1,00E-01								
4,10E+01	4,21E+01	1,06E+02	1,02E+02	1,63E+02	1,51E+02	1,43E+02	1,46E+02	8,30E+01	6,00E+01
< 1,80E+00	< 1,80E+00	< 1,80E+00	< 1,80E+00	1,80E+00	2,50E+00	1,50E+00	2,80E+00	< 1,80E+00	< 1,80E+00
< 5,00E-02	< 5,00E-02	< 5,00E-02	6,00E-02	< 5,00E-02	8,00E-02	1,00E-02	2,20E-01	< 1,00E-01	< 1,00E-01
< 3,00E-01	< 5,00E-01								
< 4,00E-02	7,00E-02	< 5,00E-02	6,00E-02	< 5,00E-02	< 5,00E-02	< 5,00E-02	1,00E-01	< 1,00E-02	< 1,00E-02
-	-	-	< 1,00E-02						

es eaux à risques des deux réseaux (1 et 2) de COGEMA La Hague (Années 1989 à 2000)

1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
331	493	438	423	339	418	349	281	301	346	280
112500	241000	145000	163000	16200	18200	8930	4820	54300	29000	25600
83	91	72	40	53	50	97	32	35	37	33
33000	55000	48000	22000	134000	86000	20600	9440	19000	21000	10700
282	883	313	9010	2700	613	578	400	380	367	4000
-	-	-	-	-	-	-	-	-	-	-
<33	<u><50</u>	<43	360	<108	<42	<u><35</u>	<u>28</u>	<u>89</u>	<u>34</u>	<u>32</u>
<u><331</u>	<u><545</u>	440	3680	<2400	<2095	<349	360	309	355	320
848	652	107	278	1184	<2095	1796	1515	1517	1790	<1570
396	10870	8550	7000	10580	8020	9650	6030	6080	6540	5250
10170	7780	19000	11000	8080	7190	5900	4730	7250	5560	4830
60900	112000	72000	80000	79000	5380	24400	18300	32000	30700	23900
17900	23000	20200	13200	18700	15500	14000	10040	10200	11000	9800
3780	5810	4810	1900	7300	8910	10200	2150	2370	2590	2200
78	126	132	100	146	75	75	41	60	67	53
98	212	52	3900	128	31	320	215	53	110	63
27	22	13	190	29	23	26	14	24	21	30
14	<u><10</u>	15	<u><94</u>	28	32	51	14	15	17	16
6550	9680	5500	5200	7700	6150	2850	3754	1770	3010	1860
349	205	171	110	45	38	21	20	18	19	15
156	102	48	200	<u><120</u>	<u><100</u>	<u><19</u>	<u><14</u>	15	<u><17</u>	<u><15</u>
<u><33</u>	12	11	6	<u><11</u>	10	26	27	47	30	46
<u><3</u>	<u><13</u>	<u><11</u>	<u><56</u>	6	9	6	3	3	<u><3</u>	<u><3</u>
<u><120</u>	<u><120</u>	<u><130</u>	<u><2780</u>	<u><9</u>	234	<u><173</u>	<u><140</u>	<u><150</u>	<u><172</u>	<u><157</u>
<u><12</u>	<u><8</u>	<u><22</u>	<u><167</u>	33	23	19	14	15	<u><17</u>	<u><16</u>
4	28	86	1400	28	26	22	28	35	28	27
4	<u><9</u>	8	<u><5</u>	<u><2</u>	4	2	<u><1</u>	<u><2</u>	<u><2</u>	<u><2</u>
1073	1580	957	490	436	440	622	250	120	185	160
-	-	-	-	-	-	-	-	-	-	-

quées sont inférieures à la limite de détection de la méthode analytique utilisée.

Annexe N° 7

Bilans mensuels de la charge chimique et bactériologique des eaux usées industrielles et domestiques rejetées par COGEMA La Hague dans le "ruisseau des Moulinets"

Années 1988 à 2000

- Autorisation préfectorale : 88.1734 du 22/11/1988
- 1966 à 1988 : rejet via la conduite de rejet
- Analyses physico chimiques (depuis 1988) :
- Températures en °C
- Hq -
- Débit en m3 /h
- Couleur en mg de Pt
- Matières en suspension en mg/l
- DBO5 en mg/l de O2
- DCO en mg/l de O2
- Azote total (méthode de Kjeldhal) en mg/l de N
- Oxygène dissous en % de saturation
- Orthophosphates en mg/l de P2O5
- Bicarbonates en mg/l de HCO3
- Chlorure en mg/l de Cl
- Chlore résiduel en mg/l de Cl2
- Sulfates en mg/l de SO4
- Nitrates en mg/l de NO3
- Nitrites en mg/l de NO2
- Métaux lourds en μg/l
- Coliformes totaux par 100 ml
- Coliformes thermotolérants par 100ml
- Streptocoques fécaux par 100 ml
- Hydrocarbures en mg/l
- Hydrazine en mg/l
- Détergents anioniques en mg/l de MABS
- Bilans mensuels pour les années 1988 à 2000 (voir tableaux suivants)

Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
11	7,8	12,4	10,9	14	15,7	13,6	18,1	20,6	23,7	14	17
8,5	7,75	7,8	8	8,45	6,5	9,1	8	8,3	8,05	9,2	8,05
-	-	-	-	-	-	-	-	-	-	-	-
95	75	85	55	85	55	65	85	65	60	65	45
84	82	20	41	327	220	35	85	10	17	46	9
55	35	45	6	27	25	21	150	14	30	11	6
115	125	75	56	69	100	36	285	42	85	26	<10
38	40	<5	3,7	9,2	35	11	29	9,1	5	5,4	5,9
61,9	83,4	83,7	90,7	106,2	62	70	61,9	95	5,6	8,9	74,7
16	4	7,9	0,33	2	<0,02	2,38	6,2	2,8	3,5	178	2,4
286,7	81,5	190	103,7	213,6	26	130,4	200,3	165	154	1,7	127,4
84	160	2700	1655	119	300	39	107	3400	1260	56	72
<0,05	<0,05	0,1	<0,05	0	<0,1	<0,1	0	0	0	<0,05	<0,05
27	35	750	300	36	26	10	30	435	270	29	67
<0,5	9,9	710	50,3	193	954	86,5	656	37,5	348	41,5	72,5
0,1	0,1	7,6	0,23	3,9	0,4	1,7	3,8	2	9,3	1,5	5,8
586	5896	2830	3370	6282	44572	1804	676	1655	1465	1651	568
1400000	1100000	1400000	120000	210000	460	46000	1400000	140000	1E+06	460000	140000
1400000	43	1400000	43000	75000	43	4300	1100000	1400000	210000	43000	15000
150000	1400	1400000	2900	4600	7	29	2000	460000	46000	1400	7500
<0,10	<0,10	<0,10	<0,10	<0,10	0,13	0,16	51	<0,10	0,17	0,19	0,11
<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
0,39	<0,50	0,57	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50

Janv.	Fev.	Mars	Avr.	Mai	Juin	Juil.	Aout	Sept.	Oct.	Nov.	Dec.
18,3	18,8	23,7	20	21,7	18,5	19,5	23	17	20	12	10,8
7,9	8,3	8,15	8,05	8,25	8,65	7,85	8,25	7,9	8,5	9,35	7,85
50	8	9	90	9	1	54	50	-	9	5	60
85	85	65	95	85	85	95	33	>150	37	75	140
13	38	5	18	28	72	335	5	55	14	59	48
20	26	19	20	23	90	29	11	66	6	59	68
30	42	39	50	88	215	130	25	172	23	90	110
6	10	14	8,8	37	25	9,5	1	14,5	1,2	1	32
67,9	87,4	90,5	108,6	99,7	66,9	98,5	77	65	71,3	65,3	78,4
2,1	1,2	3,6	4,7	6,5	8,5	0,46	1,14	9,5	1,05	9,6	15
128	300	145,3	139,4	149,2	234,5	155,4	128,2	256	143,7	312,9	327,3
63	22	59	175	69	131	112	69	136	134	145	115
0	0	0	0	0	0	0	0	0	0	0	0
29	22	36	34	24	45	53	34	54	57	57	40
160	136	78	52,5	24	29	39,5	95,5	102	735	659	93,5
14,5	4,5	6,4	1,8	2,1	3,3	4,3	1,3	2	0,6	3,6	1,3
1479	1236	446	278	653	852,5	5311	502,5	777,5	982	1481	2611,6
21000	1400000	1100000	110000	1100000	460000	75000	150000	150000	2700	1100000	1100000
21000	1400000	210000	110000	1100000	460000	15000	43000	150000	2000	43000	460000
4400	14000	140000	46000	75000	1100000	1100100	120000	90	11000	1100000	460000
<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
<0,5	<0,5	<0,5	50	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5

Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
14,1	10,3	11	13	14	20	17,4	18	17,5	13	14,5	11,7
7,55	8,15	8,4	8,45	7,7	8,5	7,9	7,75	8,2	7,75	7,4	7,65
50	30	30	5	2	-	4	130	100	40	15	50
65	95	80	85	47	75	95	75	73	85	35	75
22	14	46	23	4	52	26	20	40	24	7	3
95	30	14	40	15	81	84	23	21	87	7,1	20
145	45	58	100	28	121	115	44	33	116	22	29
12	15	6,3	13	0,9	17,4	0,9	4,3	1,3	11	1,1	8,3
88,4	103,2	93,7	109,8	97,7	96,2	98,3	95,9	90,5	45,2	48,6	111,4
7,3	6,6	5,8	6,7	2	6	5,9	0,96	1,51	18	2,5	4,7
206,3	187,6	182,2	177,9	103,2	120	158,6	11,9	99,1	147,5	70,9	111,5
140	1350	5400	1960	145	1180	218	86	90	105	62	60
0	0	0	0	0	0	0	0	0	0	0	0
58	182	490	266	47	275	120	45	47	51	29	38
380	51	150	84,5	174	82	788	57	203	84,5	53	71,5
0,6	0,6	3,4	1,6	1,8	2,8	8,3	4,5	1,4	4,4	2,2	3,8
528,2	794	1355	2799	1035	585	1126	1796	1736	520	296	641
460000	150000	11000	110000	4600	1400000	140000	-	75000	210000	11000	1E+05
36000	4000	2400	910	200	1100000	4300	-	4000	23000	2400	7500
120000	11000	93	460	150	1400	11000	-	460	14000	93	1100
<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
	14,1 7,55 50 65 22 95 145 12 88,4 7,3 206,3 140 0 58 380 0,6 528,2 460000 36000 120000 <0,1 <0,05	14,1 10,3 7,55 8,15 50 30 65 95 22 14 95 30 145 45 12 15 88,4 103,2 7,3 6,6 206,3 187,6 140 1350 0 0 58 182 380 51 0,6 0,6 528,2 794 460000 150000 36000 4000 120000 11000 <0,1 <0,1 <0,05 <0,05	14,1 10,3 11 7,55 8,15 8,4 50 30 30 65 95 80 22 14 46 95 30 14 145 45 58 12 15 6,3 88,4 103,2 93,7 7,3 6,6 5,8 206,3 187,6 182,2 140 1350 5400 0 0 0 58 182 490 380 51 150 0,6 0,6 3,4 528,2 794 1355 460000 150000 11000 36000 4000 2400 120000 11000 93 <0,1 <0,1 <0,1 <0,05 <0,05 <0,05	14,1 10,3 11 13 7,55 8,15 8,4 8,45 50 30 30 5 65 95 80 85 22 14 46 23 95 30 14 40 145 45 58 100 12 15 6,3 13 88,4 103,2 93,7 109,8 7,3 6,6 5,8 6,7 206,3 187,6 182,2 177,9 140 1350 5400 1960 0 0 0 0 58 182 490 266 380 51 150 84,5 0,6 0,6 3,4 1,6 528,2 794 1355 2799 460000 150000 11000 110000 36000 4000 2400 910 120000 11000 93	14,1 10,3 11 13 14 7,55 8,15 8,4 8,45 7,7 50 30 30 5 2 65 95 80 85 47 22 14 46 23 4 95 30 14 40 15 145 45 58 100 28 12 15 6,3 13 0,9 88,4 103,2 93,7 109,8 97,7 7,3 6,6 5,8 6,7 2 206,3 187,6 182,2 177,9 103,2 140 1350 5400 1960 145 0 0 0 0 0 58 182 490 266 47 380 51 150 84,5 174 0,6 0,6 3,4 1,6 1,8 528,2 794 1355	14,1 10,3 11 13 14 20 7,55 8,15 8,4 8,45 7,7 8,5 50 30 30 5 2 - 65 95 80 85 47 75 22 14 46 23 4 52 95 30 14 40 15 81 145 45 58 100 28 121 12 15 6,3 13 0,9 17,4 88,4 103,2 93,7 109,8 97,7 96,2 7,3 6,6 5,8 6,7 2 6 206,3 187,6 182,2 177,9 103,2 120 140 1350 5400 1960 145 1180 0 0 0 0 0 0 58 182 490 266 47 275 380	14,1 10,3 11 13 14 20 17,4 7,55 8,15 8,4 8,45 7,7 8,5 7,9 50 30 30 5 2 - 4 65 95 80 85 47 75 95 22 14 46 23 4 52 26 95 30 14 40 15 81 84 145 45 58 100 28 121 115 12 15 6,3 13 0,9 17,4 0,9 88,4 103,2 93,7 109,8 97,7 96,2 98,3 7,3 6,6 5,8 6,7 2 6 5,9 206,3 187,6 182,2 177,9 103,2 120 158,6 140 1350 5400 1960 145 1180 218 0 0 0	14,1 10,3 11 13 14 20 17,4 18 7,55 8,15 8,4 8,45 7,7 8,5 7,9 7,75 50 30 30 5 2 - 4 130 65 95 80 85 47 75 95 75 22 14 46 23 4 52 26 20 95 30 14 40 15 81 84 23 145 45 58 100 28 121 115 44 12 15 6,3 13 0,9 17,4 0,9 4,3 88,4 103,2 93,7 109,8 97,7 96,2 98,3 95,9 7,3 6,6 5,8 6,7 2 6 5,9 0,96 206,3 187,6 182,2 177,9 103,2 120 158,6 11,9 <tr< th=""><th>14,1 10,3 11 13 14 20 17,4 18 17,5 7,55 8,15 8,4 8,45 7,7 8,5 7,9 7,75 8,2 50 30 30 5 2 - 4 130 100 65 95 80 85 47 75 95 75 73 22 14 46 23 4 52 26 20 40 95 30 14 40 15 81 84 23 21 145 45 58 100 28 121 115 44 33 12 15 6,3 13 0,9 17,4 0,9 4,3 1,3 88,4 103,2 93,7 109,8 97,7 96,2 98,3 95,9 90,5 7,3 6,6 5,8 6,7 2 6 5,9 0,96 1,51 </th></tr<> <th>14,1 10,3 11 13 14 20 17,4 18 17,5 13 7,55 8,15 8,4 8,45 7,7 8,5 7,9 7,75 8,2 7,75 50 30 30 5 2 - 4 130 100 40 65 95 80 85 47 75 95 75 73 85 22 14 46 23 4 52 26 20 40 24 95 30 14 40 15 81 84 23 21 87 145 45 58 100 28 121 115 44 33 116 12 15 6,3 13 0,9 17,4 0,9 4,3 1,3 11 88,4 103,2 93,7 109,8 97,7 96,2 98,3 95,9 90,5 45,2 <t< th=""><th>14,1 10,3 11 13 14 20 17,4 18 17,5 13 14,5 7,55 8,15 8,4 8,45 7,7 8,5 7,9 7,75 8,2 7,75 7,4 50 30 30 5 2 - 4 130 100 40 15 65 95 80 85 47 75 95 75 73 85 35 22 14 46 23 4 52 26 20 40 24 7 95 30 14 40 15 81 84 23 21 87 7,1 145 45 58 100 28 121 115 44 33 116 22 12 15 6,3 13 0,9 17,4 0,9 4,3 1,3 11 1,1 88,4 103,2 93,7 109,8 97,7 96,2 98,3</th></t<></th>	14,1 10,3 11 13 14 20 17,4 18 17,5 7,55 8,15 8,4 8,45 7,7 8,5 7,9 7,75 8,2 50 30 30 5 2 - 4 130 100 65 95 80 85 47 75 95 75 73 22 14 46 23 4 52 26 20 40 95 30 14 40 15 81 84 23 21 145 45 58 100 28 121 115 44 33 12 15 6,3 13 0,9 17,4 0,9 4,3 1,3 88,4 103,2 93,7 109,8 97,7 96,2 98,3 95,9 90,5 7,3 6,6 5,8 6,7 2 6 5,9 0,96 1,51	14,1 10,3 11 13 14 20 17,4 18 17,5 13 7,55 8,15 8,4 8,45 7,7 8,5 7,9 7,75 8,2 7,75 50 30 30 5 2 - 4 130 100 40 65 95 80 85 47 75 95 75 73 85 22 14 46 23 4 52 26 20 40 24 95 30 14 40 15 81 84 23 21 87 145 45 58 100 28 121 115 44 33 116 12 15 6,3 13 0,9 17,4 0,9 4,3 1,3 11 88,4 103,2 93,7 109,8 97,7 96,2 98,3 95,9 90,5 45,2 <t< th=""><th>14,1 10,3 11 13 14 20 17,4 18 17,5 13 14,5 7,55 8,15 8,4 8,45 7,7 8,5 7,9 7,75 8,2 7,75 7,4 50 30 30 5 2 - 4 130 100 40 15 65 95 80 85 47 75 95 75 73 85 35 22 14 46 23 4 52 26 20 40 24 7 95 30 14 40 15 81 84 23 21 87 7,1 145 45 58 100 28 121 115 44 33 116 22 12 15 6,3 13 0,9 17,4 0,9 4,3 1,3 11 1,1 88,4 103,2 93,7 109,8 97,7 96,2 98,3</th></t<>	14,1 10,3 11 13 14 20 17,4 18 17,5 13 14,5 7,55 8,15 8,4 8,45 7,7 8,5 7,9 7,75 8,2 7,75 7,4 50 30 30 5 2 - 4 130 100 40 15 65 95 80 85 47 75 95 75 73 85 35 22 14 46 23 4 52 26 20 40 24 7 95 30 14 40 15 81 84 23 21 87 7,1 145 45 58 100 28 121 115 44 33 116 22 12 15 6,3 13 0,9 17,4 0,9 4,3 1,3 11 1,1 88,4 103,2 93,7 109,8 97,7 96,2 98,3

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	15,4	6,7	13,5	13,6	12,7	15,6	17,7	15,9	15	12	16	7,5
	7,55	7,55	7,6	7,7	7,25	6,8	8,2	7,45	7,55	6,7	7,5	7,7
	45	150	10	7	2	8	80	2	10	-	80	3
	55	75	75	135	37	110	110	38	20	150	65	5
	15	95	9	20	40	32	45	12	9	44	15	3
	27	12	24	40	8,7	60	40	9,1	5,2	50	18	4,2
	35	34	38	60	19	80	100	<15	<15	126	24	11
	5,2	4,5	2,4	18	<0,5	17,4	12	4,1	<0,5	4,6	4,3	<0,5
	100,7	74,3	11,3	99,9	79,8	86,1	103,9	92,9	88,6	96,9	97,3	98,2
	3,8	1,6	2,2	6,9	2,6	7,1	9,2	1,4	0,1	8,95	4,7	0,62
	82,2	81,3	65,9	148,5	63,8	124,7	127,5	77,7	78,1	57	67,7	66
	53	129	63	93	83	99	75	79	73	80	66	71
	0	0	0	0	0	0	0	0	0	0	0	0
	32	36	35	36	32	37	42	31	27,5	39	33	28
	45	44	63	49	27	144	68,3	22	11,5	277,5	57	15,5
	2,4	1,07	5,5	1,2	1,2	7,5	5,7	0,46	0,1	2,9	3,7	0,1
	2606	2326	1532	891	696,5	1471	1166	906	746	856	836	291
	14000	1100	14000	46000	11000	5E+05	460000	4600	460	1E+05	1E+05	240
	4600	730	2400	2300	430	43000	15000	430	93	9300	15000	240
	4600	46000	240	240	3	750	150	15	9	23	1400	<3
	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
3S	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5

	Janv.	Fev.	Mars	Avr.	Mai	Juin	Juil.	Aout	Sept.	Oct.	Nov.	Dec.
	17,6	18	10	14,9	15,7	17,9	15,2	19,2	20,9	12,2	12,1	11,1
	7,45	7,9	7,7	7,85	7,5	8,5	7,5	7,7	7,6	7,7	7,7	6,4
	12	90	3	/	70	80	5	80	70	4	5	90
	10	75	25	> 70	40	> 70	45	> 70	55	30	40	70
	4	6	9	39	8	85	11	34	19	53	15	26
	15	25	6.9	43	8.5	65	2.4	30	9.8	21	19	18
	25	42	< 15	86	12	170	17	95	30	31	25	39
	2,5	21	<0,5	79	5,7	13	<0,5	6,8	2,9	7,1	5,6	1,3
	95	99,7	96,3	85,9	118,5	91,8	92,6	93,5	88,5	96,3	92,8	79,1
	3	8,5	1,4	10,54	7,1	15	1,39	10,5	7	4,3	3,1	6,2
	51	137,5	63,4	100	76,4	105,7	74,8	88	73,7	14,4	65,3	53,5
	49	61	72	64	48	79	65	67	52	52	66	47
	0	0	0	0	0	0	0	0	0	0	0	0
	30	24	29	32	34	42	30	35	34	28	30	29
	37,5	25,5	21,5	47,5	39,5	39,5	14	33	38	79,5	87,5	30
	3,1	6	3,5	7	10,7	8,1	0,31	0,3	3,6	6,5	4,3	3,8
	366	499	546	606	473	536	201	731	361	1281	645	1180
	1400	46000	930	240000	14000	46000	9300	14000	14000	5300	11000	46000
	240	15000	930	240000	4600	15000	9300	14000	4600	3500	4600	9300
	460	2100	15	2900	240	23	23	290	150	14000	2400	1100
	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
BS	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	0,5	<0,5	<0,5

Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
13,2	13,5	9,9	22,2	15,5	17,9	16,6	15,5	14,2	11,2	8,8	11,2
6,25	8,1	7,8	8,15	7,8	7,75	8,15	7,95	7,8	8	8,4	8,2
7	18	0.3	-	1	4	70	0	60	2	80	70
45	20	> 70	80	> 70	> 70	> 70	> 70	>70	> 70	> 70	> 70
20	23	40	36	60	61	47	43	105	28	40	26
23	19	50	38	85	65	88	85	63	33	10	< 1
40	52	65	133	175	90	125	130	240	70	83	78
14	15	29	6,00	13	7,6	16	19	16	8,1	20	33
94,6	23,7	77,6	109	77,6	87	98,9	70,4	80,6	73	92,4	85,2
5,5	5,4	18	10,2	20	8,7	20	21	29	9,7	13	10,63
45	185,5	187,5	211,60	127,5	132,5	219,1	195,3	127,7	134,8	191	205,1
58	750	230	71	195	990	112	112	135	570	444	235
0	0	0	0	0	0	0	0	0	0	0	0
32	180	64	40	82	200	42	49	49	125	87	62
55	1070	1230	64	110	775	305	370	145	67	39	165
3,6	3,7	15	2,77	12	6,7	10,5	16	8,8	4,2	0,46	0,42
1281	946	1166	816	822,5	1805	611	791	581	311	1236	946
110 000	1 100 000	24 000	1 100 000	21 000	210 000	460 000	110 000	1 400 000	15 000	15	9
24 000	9 000	9 300	1 100 000	7 500	35 000	240 000	46 000	150 000	4 300	15	9
1 400	4 600	240	1 100	43	240	1 500	1 400	120 000	460	1	15
<0,10	0,15	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	< 0,075	0,1	<0,05	<0,05	<0,05	<0,05
<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	9,0	9,0	10,5	12,4	13,2	16,3	18,4	17,6	14,8	13,4	12,6	10,1
	8	8	8	8	8	8,15	8,05	8,35	8,3	8,35	8,4	8,3
	5	0	0		0	70	60	60	70	0	0	60
	>70	>70	65	>70	>70	17	55	>70	65	>70	45	45
	19	27	15	91	29	26	25	26	19	23	20	12
	20	13	1	35	3	19	26	0,8	1,7	13	12	1,5
	47	100	61	170	80	32	62	64	65	110	46	29
	39	29	33	37	10	6,1	16	9	11	25	15	17
	73	54	72	73	111	124,2	99,8	102	97,1	99,9	94,8	96,8
	28	26	11	27	16	14	3,2	7,1	5,1	13	13	4,9
	257	226	360	208	124	120	141,9	134	123,7	244,6	180,6	182,4
	94	415	141	110	103	256	109	114	143	100	98	141
	0	0	0	0	0	0	0	0	0	0	0	0
	90	92	58	54	32	51	39	60	75	35	49	56
	32	170	1 325	136	257	906	131,5	280	600	20,5	203	553
	0,2	0,1	0,3	0,7	2,7	0,4	1,9	2,1	2,5	0,7	0,6	0,3
	626	1 336	541	1 206	1 101	1541	826	1071	1376	921	1436	956
	110 000	4	43	460	23	<3	11000	240	280	9	46000	460
	110 000	4	23	460	23	<3	91	240	280	4	11000	150
	11 000	3	6	21	38	23	93	23	4	2	1100	93
	<0,10	<0,10	<0,10	0	<0,10	0,16	<0,5	1,9	10,8	<0,5	0,15	0,15
	<0,05	<0,05	0	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
S	<0,50	<0,50	<0,5	<0,5	<0,5	<0,5	<0,5	<0,50	<0,5	<0,5	<0,5	<0,5

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	8,7	10,6	10	10	14,80	16,1	18,2	17,8	16,4	14,5	11	10
	8,3	8,5	8	8,10	8	8,15	8,15	8,1	7,9	8,2	7,8	8,45
	40	2		50	0,50	50	60	0,5	10	50	0,5	25
	>70	45	35	>70	35	>70	70	>70	70	60	45	55
	23	22	19	67	20	39,6	61	62	21	34	9	25
	6,6	7,6	5	20	11	59	23	14	11	13	16	2,5
	70	50	86	137	63	25	67	51	56	40	49	45
	21	18	16	25	14	12	7	14	7,7	6,6	8	26
	108,7	90,5	95	77,60	80	77,4	80,9	79,2	78,05	79	70,3	81,5
	5,4	7,0	5	7	7	6,7	7,1	4,3	5,4	3,4	4,26	4,54
	181,1	184,5	140	204	123	135,4	129	139,6	161,8	132	148,8	189,2
	69	520	115	87	151	148	107	470	172	187	1495	250
	0	0	0	0	0	0	0	0	0	0	0	0
	28	85	73	40	51	56	48	97	62	75	245	68
	40,5	290	457	31	890	437	164	1830	380	538	560	570
	0,2	0,2	0,4	0,80	2,8	1,2	1,7	3,8	3,1	4,0	13,8	0,5
	1266	1706	1 281	1 721	1 046	1196	2746	2196	531	907	861	931
	93,0	15,0	3	9	4 600	1100	1100	2400	16	15	43	4
I	9,0	15,0	3	9	150	93	1100	240	3	3	15	4
	4,0	9,0	3	15	23	9	43	93	23	4	3	3
	4,8	<0,10	3	0,55	0,06	<0,10	0,35	<0,10	0,83	<0,10	0,78	<0,10
	<0,05	<0,5	<0,05	<0,05	<0,03	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,005
BS	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,50	<0,5	<0,50	<0,50	<0,50

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	3	7	10	13	12	15,3	16,9	18	15,5	14,4	9	7,9
	8,25	8,4	8,25	8,1	7,8	7,85	8,25	8,35	7,85	8,1	8,15	8,25
	1	50	15	<1	1	0	0,2	0	0	0,5	40	90
	55	60	55	55	55	10	30	35	65	10	>70	65
	19	22	16	13	22	4	11	14	20	5	35	42
	11	1,9	12	13	41	5,5	8,2	9,5	14	5,5	29	20
	39	82	51	52	90	29	46	40	65	19	80	61
	23	18	<0,5	<0,5	0,5	0,5	50,5	1,1	<0,5	<0,5	10	<0,5
ion	74,3	95,7	97,1	84,3	71,5	73,7	40,5	66,4	85,9	53,1	93	96,5
	6,7	11	11	7,7	8,2	2,83	3,8	3	6,6	2,5	3	5,17
	172,8	223,5	238,4	178,9	173,1	107	150,1	162,4	154,2	127,7	153,5	135,3
	145	142	163	222	183	155	186	162	137	134	99	28
	0	0	0	0	0	0	0	0	0	0	0	0
	71	67	64	87	88	96	94	68	59	76	38	37
	402	310	375	1045	557	900	83	657	828	847	178	72
	1,8	0,2	0,5	4,0	13,0	1,0	6,2	1,8	5,2	2,2	2,4	0,5
	1866	1381	896	531	461	231	297	416	381	516	1416	2646
	1100	4	2400	7	93	93	750	930	93	2300	9	1200
00ml	460	4	460	3	4	3	230	430	93	430	4	1200
	460	3	38	6	3	3	23	9	14	43	4	750
	0,15	1,22	0,16	<0,10	0,8	0,1	0,13	<0,10	<0,1	0,17	0,1	0,12
	<0,05	<0,05	<0,05	<0,05	0,05	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
MABS	<0,50	<0,5	<0,5	<0,5	0,5	0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	7,0	7,0	10,5	14,0	13,5	15,2	17,7	18,5	16,8	11,1	11,5	6,7
	7,75	8,2	7,7	7,75	7,65	8,05	7,6	7,9	8,1	8,15	8,5	8,6
	0	70	0,5	40	6	50	0	50	0	45	0	150
	50	70	70	70	>70	70	40	>70	25	55	70	70
	5	29	25	39	17	32	9	77	7	40	20	26
	13	35	53	52	9,9	27	3	15	5	3,3	10	5,8
	50	65	100	120	55	80	45	119	32	51	53	42
	<0,5	24	0,9	11	<0,5	14	0,5	7,6	<0,5	<0,5	4,8	2,7
n	80,3	92,7	81	97	96,4	98	79,8	91,8	85,7	102,2	-	154,4
	7,7	14	14	15	5,9	15,1	9,1	17,8	3,7	2,3	8,43	0,015
	116,1	205	125,3	134	97,1	205,5	96,4	157	914,9	82,2	201	175
	146	94	145	100	185	88	172	101	129	137	138	168
	0	0	0	0	0	0	0	-	0	0	0	3,5
	97	91	67	47	59	31	67	39	59	66	107	127
	631	154	585	143,5	820	27	583	116	575	1782	565	790
	21,6	1,3	13,2	2,4	4,4	2,3	3,1	5,2	0,4	0,9	0,7	0,3
	416	1216	369	536	936	866	341	6596	896	4195	2156	1676
	2300	75	290	1100	9300	2300	93	9300	230	4300	3	23
)ml	230	75	290	230	43	430	23	930	93	75	3	9
	9	14	43	21	3	43	4	230	230	43	43	4
	<0,1	0,37	<0,1	<0,1	2,3	<0,1	0,48	0,44	<0,1	0,56	<0,1	<0,1
	<0,05	<0,05	0,11	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,5	<0,05
/IABS	<0,5	<0,5	<0,5	<0,5	<0,5	0,5	<0,5	<0,5	0,59	<0,05	<0,5	<0,5

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc
	5,2	9,8	11,3	12,3	14,5	16,1	17,9	17,7	16,2	11,9	9,3	11,2
	8,2	8,05	8,15	8,25	7,95	8,15	8,1	7,8	7,7	7,9	7,9	7,9
	70	50	0,5	0	0	10	60	4	1	35	0	0,5
	>70	60	>70	>70	50	>70	>70	>70	35	65	50	>70
	71	25	10	7	9	23	21	21	10	28	35	19
	6,5	5	<5	5	<5	21	11	9,6	5	9	7,1	9
	61	30	49	50	30	80	51	62	53	68	47	38
	11,1	12,5	-	24	1,2	11	7,6	2,9	1,7	15	11	11
	88,9	96,9	98,4	84,9	106,4	100	97,8	86,3	79,8	99,7	83,5	90
	4,2	6	14	16	7,3	18	11	10	2,1	8	6,8	8,7
	143,5	144	193,6	161,5	102,4	151	174,5	114,8	103,7	162,9	146	156,8
	118	121	135	12	212	118	154	146	170	82	89	118
	0	0,07	-	0,06	0,06	0,18	0,23	0,08	0,05	0,07	0	0,04
	68	1435	38	11	72	43	58	51	104	33	39	56
	472	568	575	60,5	1026	240	341	390	1005	83	289	526
	0,06	0,4	0,4	0,3	0,8	1,9	3,1	6,4	14,0	3,3	3,7	3,6
	7031	1342	1324	912	1841	751	587	1266	866	696	3106	821
	930	430	2100	<3	1500	230	23000	23000	9300	21000	21	4300
	93	430	93	<3	430	3	9300	75	23	15000	7	43
	23	930	9	<3	4	3	150	23	430	1500	3	43
	280	-	0,3	0,11	<0,1	0,13	<0,1	<0,1	0,11	0,88	0,14	<0,1
	<0,05	0,17	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
S	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5

Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov	Déc.
8,9	8,9	12,0	12,8	16,0	16,7	17,2	18,7	15,6	13,2	11,7	10,4
7,75	7,7	7,65	7,75	7,45	8	7,95	8,15	7,6	8,1	7,9	7,35
1	1	0	0	0	0,5	0	0	0	0,5	1	0
35	65	40	>70	>70	70	>70	70	70	70	40	5
14	27	30	50	25	32	47	30	15	36	26	4
5	8	10	21	19	16	14	13	17	31	22	<5
30	54	52	113	83	76	93	69	62	128	83	<30
14	13	-	20	2,7	9,8	<0,5	<0,5	11	23	12	<0,5
84,7	68,6	83	86,1	68,8	92,3	65,5	81,5	57,1	99,5	94,7	88,6
9,6	7,9	7,7	18	24	12	4,8	6,9	7,5	9	3,7	<0,1
128,1	121,5	103,8	184,2	101	153	134,7	134,4	167,8	215,3	153,8	74,3
62	69	175	86	97	126	267	204	95	197	265	90
-	-	0	<0,01	0	0	0,04	0,07	0,05	0,94	0,03	0
25	41	82	39	87	27	92	65	33	36	71	34
27	98,5	1115	388	183	289,5	1120	1280	114	244	839	5,9
5,3	5,3	3,8	7,5	7,8	1,2	5,5	5,07	7,4	1,68	1,2	0,66
1418	1631	1491	1031	1693	851	601	1347	306	964	1244	771
2300	4300	2300	23000	21000	43000	430	2300	9300	23	93 000	93
43	2300	290	9300	150	930	93	930	430	23	75	<3
230	43	38	150	23	23	4	93	430	3	9	<3
0,1	0,46	0,02	0,22	<0,17	<0,1	<0,1	0,5	0,15	<0,10	0,45	<0,1
<0,05	<0,05	<0,05	0,07	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5

Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
7,8	9,4	8,0	11,7	14,8	16,6	16,2	17,7	16,6	13,1	9,2	9,6
7,4	7,7	7,85	6,4	8,1	7,75	7,7	7,75	7,65	7,65	7,95	8,05
0	0	0	5	160	1	150	75	0,5	30	190	150
>70	50	70	70	70	>70	>70	>70	>70	70	>70	>70
55	11	15	20	78	70	79	23	17	28	18	20
5	<5	6	7	24	42	29	7	9	17	9	13
42	46	55	46	116	177	112	42	42	61	72	81
4,4	15	24	5,1	18	25	13	3	0,5	6,3	15	16
86	78,7	81,2	85,5	101,3	101	91,7	100,4	94	102	86	96
1,9	0,14	14	5,9	12	15	13,85	4,01	3,8	7	6,8	7,2
77	121,3	181,7	<24,4	241,2	234,4	148,7	113,6	119,4	99,8	135	151,8
226	1	96	139	117	130	110	87	195	115	74	78
0,05	0		0,02	0,07	0,03	0,04	0,16	0,11	0,27	0,27	0,72
75	<5	37	52	42	48	41	33	113	39	23	28
1322	6,6	110	1126	388,5	530	447,2	146,5	17,6	305	104	180
1,65	5,6	8,6	0,93	1,96	2,57	1,93	0,64	1,6	2,2	0,35	0,62
7351	1281	977	853	2902	986	2852	850	472	555	795	1101
4 300	2 300	900	2 300	9 300	93 000	430	930	430	2 300	9	230
930	930	400	28	430	230	93	43	38	43	9	23
93	230	23	4	9	38	4	15	93	23	3	3
<0,1	0,17	<0,1	<0,1	0,12	<0,1	0,86	<0,1	<0,1	0,71	0,33	0,38
<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
3 \$ <0,5	<0,5	<0,1	<0,05	0,095	0,123	0,14	<0,05	0,09	0,09	0,081	<0,05

Annexe N° 8

Bilans mensuels de la charge chimique et biologique des eaux pluviales rejetées par COGEMA La Hague dans les ruisseaux des "Moulinets" et de la "Sainte-Hélène"

Années 1988 à 2000

Masses en kilogramme par an

Cette annexe est construite en 2 parties :

- 8₁ Ruisseau des Moulinets (14 pages)
- 8₂ Ruisseau Sainte-Hélène (14 pages)

Annexe N° 8₁

Bilans mensuels de la charge chimique et biologique des eaux pluviales rejetées par COGEMA La Hague dans le "ruisseau des Moulinets"

Années 1988 à 2000

- Autorisation préfectorale : 88.1735 du 22/11/1988
- Analyses physico-chimiques
- Débit (3 l/s < débit < 1000 l/s)
- Température (< 30 °C)
- pH (5,5 < pH < 8,5)
- MES (< 120 mg/l)
- Composés cycliques hydroxylés (< 10 g/j)
- Hydrocarbures (< 20 ppm)
- Sels dissous (300 kg/j)
- Bilans mensuels pour les années 1988 à 2000 (voir tableaux suivants)

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	8	6,5	10	10,8	12	14,4	14,4	19,2	17,8	20,5	13	13,2
	7,9	7,1	8	7,9	8,5	7,75	8,3	7,9	8,3	8	8,9	7,9
	25	15	15	1	80	245	4	77	13	17	66	5
énol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,1	<0,1	1	<0,1	<0,1	<0,1	<0,1	4,1	<0,1	<0,1	0	<0,1
	250	333	812	430	510	16150	335	934	4680	4220	315	405

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	14,1	17,9	22,2	15	20,2	17,2	20	16,8	16,9	18	11,9	10,6
	7,9	8	8,25	8	8,2	8,7	8	8,1	7,9	8	9,25	7,9
	11	35	10	14	29	44	100	4	48	30	53	38
nénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
	305	475	285	340	400	468	425	355	640	1505	1385	635
							·					

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	15,2	9,1	8,2	12	15	19,4	16,8	13	17,5	12	13,5	10,9
	7,55	8	8,1	8,1	8,05	8,25	7,9	8,05	8,15	7,85	7,6	7,65
	16	10	8	2	3	22	26	1	34	24	3	8
hénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
	975	435	910	375	370	2270	1755	345	590	10600	190	220
					10							20

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	9,8	4,8	10	11,9	13,3	16,5	-	16	14	13	15	7
	7,55	7,3	7,9	7,6	7,6	7,8	7,3	7,8	7,8	7,8	7,55	7,8
	7	50	5	17	8	13	44	8	3	45	13	3
hénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
	225	365	287	410	400	275	295	180	235	180	160	260
												2

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	13,1	16	10,1	10,2	15,8	17,4	19,7	17,2	19,5	10,2	10,5	12,8
	7,35	7,9	8	7,65	7,55	8,2	8,6	7,95	7,65	7,8	7,8	7,85
	6	5	3	40	8	77	28	15	14	12	9	14
hénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
	440	330	185	285	160	240	200	260	260	190	185	300
	2.5	2	2	-	-	5	-	-	20	550	200	110

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	11	11,6	9,9	-	13,5	16,5	16,5	15,6	15,6	11,2	8,5	9,2
	7,9	7,95	7,85	8,1	7,95	7,85	7,95	8,3	8,55	7,95	8,4	7,95
	13	7	22	12	18	17	36	15	22	8	25	9
ohénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
	210	1180	435	375	420	1395	205	385	315	290	885	295
	130	25	3	-	4	4	-	80	-	60	20	600

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	8,1	8,5	10,7	11,9	13,3	15,2	17,2	16,9	14,9	12,2	11,9	9,8
	7,8	7,9	7,85	7,8	7,7	8,1	7,95	8,25	8,25	8,1	7,8	7,8
	4	6	0,5	4	4	20	17	25	17	3	7	8
ohénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	1,5	<0,10	<0,10	<0,10	<0,10	<0,16	<0,5	0,09	4,2	0,05	<0.10	0,12
	220	255	245	285	280	1650	445	740	760	275	225	220
	150	150	25		70	20	8		18	6	120	120

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	8,1	10,3	9	10,5	11,9	12,2	13	12,3	14	12,3	11	11
	7,65	7,5	7,8	7,25	7,75	8	8	7,9	7,85	7,75	7,9	8,25
	24	12	10	5	2	4	3	4	5	<1	<1	14
hénol	<0,03	<0,03	<0,03	<0,03	<0,025	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	0,09	0,17	<0,1	<0,1	0,03	<0,10	<0,10	<0,10	0,13	0,37	<0,10	0,1
	225	220	360	200	225	250	267	245	240	227	425	1045
	1000			565	19	17	20	8	7	10	10	5

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	11	10,5	12	13	12	12,8	12,4	12,8	12,7	12,6	11,5	8,0
	8	8	8,3	8	8	8	7,95	8	8	8	7,85	7,65
	2	13	9	<1	1	1	2	1	1	1	2	4
ohénol	<0,03	<0,03	<0,03	<0,03	0,03	0,03	<0,03	<0,03	<0,03	<0,03	<0,03	0,025
	1	0	0,07	<0,10	0	0	<0,10	<0,10	0,24	<0,10	0	0,04
	340	235	260,0	265	310	300	255	292	295	250	290	240
	8	14	15	10	10	5	10	10	14	10	20	180

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	9,8	6,8	10,8	13,0	11,3	11,8	12,1	12,9	16,0	11,0	10,9	8,8
	8,00	8,00	7,90	8,00	8,00	7,95	7,70	8,00	7,80	7,90	7,75	7,60
	<1	6	2	29	<1	2	2	1	3	1	3	3
ohénol	<0,03	<0,03	<0,03	0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	0,23	<0,1	<0,1	0,10	0,00	0,00	0,26	<0,1	0,12	<0,10	<0,10	<0,10
	230	260	239	510	245	270	260	258	270	240	230	260
	13	219	28	21	15	14	17	15	14	15	71	176

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc
	6,8	10,9	10,8	12,2	12,0	12,1	12,8	13,8	12,8	13,4	10,0	10,0
	7,45	7,85	8,25	8,00	7,80	7,95	7,95	7,90	7,70	7,85	7,80	7,75
	3	2	3	3	2	2	2	2	2	5	2	3
ohénol	<0,03	<0,03	<0,025	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,10	<0,10	0,27	<0,1	<0,1	<0,1	<0,1	0,45	0,60	<0,1	n.r	<0,1
	255	245	265	280	270	265	270	265	275	224	220	200
	136	30	50	50	17	15	12	14	17	420	70	180

	Janv.	Fév.	mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov	Déc.
	9,7	9,7	12,0	11,8	14,0	12,8	13,4	13,0	12,8	12,6	11,7	11,3
	7,75	7,75	7,85	7,95	8,00	7,95	8,00	7,95	7,9	7,9	7,9	7,9
	4	4	2	4	2	2	<2	<2	2	<2	<2	3
ohénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,1	1,47	<0,01	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
	220	230	245	250	240	270	260	330	253	260	280	185
	240	240	89	50	17	15	15	14	12	10	10	17

Ш	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	9,2	11,2	10,7	11,6	12,0	13,0	13,3	13,5	13,6	13,1	9,7	10,0
	7,9	8,15	8,7	7,6	7,95	7,6	7,05	7,95	7,8	7,4	7,05	7,7
	<2	6	7	2	2	2	14	<2	2	<2	3	4
-	<0,03	<0,03	<0,03	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025
	<0,1	0,47	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	0,1	<0,1	<0,1	<0,1
	265	269	275	254	260	179	277	285	305	260	155	203
	32	17	17	17	21	17	21	17	21	25	380	225

Annexe N° 82

Bilans mensuels de la charge chimique et biologique des eaux pluviales rejetées par COGEMA La Hague dans le "ruisseau de la Sainte-Hélène"

Années 1988 à 2000

- Autorisation préfectorale : 88.1735 du 22/11/1988
- Analyses physico-chimiques
- Débit (3 l/s < débit < 1000 l/s)
- Température (< 30 °C)
- pH (5,5 < pH < 8,5)
- MES (< 120 mg/l)
- Composés cycliques hydroxylés (< 10 g/j)
- Hydrocarbure (< 20 ppm)
- Sels dissous (300 kg/j)

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	7	11	11,1	11,3	12	13,5	13,5	16,3	13,3	11,1	12	11,4
	8,7	7,9	7,3	6,9	7,6	7,2	7,95	7,75	7,2	7,65	8,2	7,8
	307	6	10	1	3	22	13	5	10	6	305	9
phénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	0,13	<0,1	<0,1	<0,1	<0,1	<0,1	<0,17	<0,1	<0,1	<0,1	0,19	<0,1
	190	309	289	240	250	365	233	362	315	335	380	310

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	10	10,1	10,5	9,2	15,2	16	21,5	17,3	15,5	14	11,8	9
	7,6	7,5	8,05	7,65	7,8	8,1	8,05	7,8	7,45	7,9	7,85	7,6
	1	38	25	26	19	5	18	2	14	5	15	42
phénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
	295	395	285	215	385	482	405	335	95	1560	350	290
	-	220	0	-	10	10	30	10	-	-	18	55

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	-	10,5	8	12	15	15	15,5	12	14	12	14	8,2
	7,45	7,65	8,05	8,55	8,1	7,9	7,85	7,6	7,7	7,45	7,65	7,5
	12	14	8	2	8	7	1	3	2	8	1	2
hénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
	165	455	70	350	355	325	305	330	380	350	160	205
		10	15	10			10	10	10	25	10	

	Janv.	Fev.	Mars	Avril	Mai	Juin	Juil.	Aout	Sept.	Oct.	Nov.	Dec.
	8,3	7,1	10,7	12,2	14,9	14,6	16,3	18,4	14	12	8	4
	7,55	7,55	7,6	7,6	7,5	7,4	7,8	7,7	7,55	7,35	7,55	7,65
	2	7	23	2	4	7	2	7	1	<0,5	4	3
nénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
	436	380	320	300	350	360	135	145	145	110	90	270
	10	18	12	5	5	20	10	30	12	-	15	15

	Janv.	Fev.	Mars	Avr.	Mai	Juin	Juil.	Aout	Sept.	Oct.	Nov.	Dec.
	5,3	6,9	8,8	8,8	14	15,2	18,5	15,1	14,4	9,5	11	9,2
	7,6	7,75	8	7,5	7,7	8,05	7,7	7,4	7,65	7,6	7,65	7,7
	5	3	4	120	3	9	57	277	67	73	20	4
nénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
	590	245	280	160	165	310	100	325	400	155	185	300
	10	10	15	-	18	15	60	28	40	100	20	15

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	8,5	6,8	9,5	-	15,1	16,2	15,5	14,1	13,5	10,2	6,5	8,1
	7,75	7,95	8	7,85	7,7	7,75	7,55	7,85	7,9	7,7	7,6	8,15
	5	3	4	33	3	7	9	10	4	3	20	38
ohénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
	155	205	265	200	185	225	235	265	190	215	165	170
	30	28	10	-	18	10	20	10	100	15	15	950

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	7,2	8,8	11,8	12,4	13,6	17,8	19,3	11,1	14,8	12	10,9	8,5
	7,6	7,6	7,9	7,7	7,75	8,2	7,8	7,9	7,6	7,85	7,75	7,6
	23	20	8	4	6	2	4	5	8	225	5	10
hénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,10	<0,10	<0,10	<0,10	<0,10	1,33	<0,5	0,50	<0,1	1,08	<0,01	0,12
	220	240	235	245	185	260	155	245	280	135	190	190
	30	40	40		70	20	20	30	30	500	30	30

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	8,7	10,4	10,4	9,9	15,5	16,9	18,8	17,6	15,3	12,7	9	8
	7,55	7,5	7,9	7,6	7,95	7,75	7,8	8	7,65	7,65	7,65	7,8
	14	14	4	9	5	2	5	9	18	<1	6	8
phénol	<0,03	<0,03	<0,03	<0,03	<0,025	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	0,13	0,1	0,25	<0,10	0,03	<0,10	<0,10	<0,10	0,52	<0,10	<0,10	0,24
	200	135	195	105	160	140	192	935	100	161	145	745
	40	20		50	20	20	10	28	200	20	25	35

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	-	5,5	11	13,5	14	17	18,2	18,8	15	12,7	8,4	7,2
	7,55	7,7	8	8,05	7,85	8,05	8,05	7,9	7,7	7,9	7,75	7,8
	9	6	1	5	2	3	1	1	4	1	6	34
nénol	<0,03	<0,03	<0,03	<0,03	0,03	0,03	<0,03	<0,03	<0,03	<0,03	<0,03	0,025
	0,07	<0,10	0,23	<0,10	0,10	0,10	<0,10	<0,10	<0,10	<0,1	0,1	0,05
	195	290	250	220	200	245	225	190	200	160	190	230
	-	35	15	20	15	20	20	20	20	20	30	25

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	5,5	6,6	10,8	14	13,8	14,8	17,7	18,8	17	7,3	8,4	5
	7,65	7,7	8,05	7,55	7,9	7,65	7,7	7,85	7,75	7,8	7,4	7,6
	2	11	2	10	3	4	1	2	1	1	3	3
ohénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	<0,10	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	0,5	<0,1	0,14
	256	180	195	205	175	110	175	182	220	160	145	165
	20	20	29	25	20	26	20	22	20	30	30	30

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc
	1,8	9,9	11,4	12	15,5	15,6	18,6	18,5	16,2	11,9	8,3	10,2
	7,6	7,3	7,4	7,4	7,3	7,05	7,6	7,6	6,75	7,35	7,65	7,75
	<2	3	4	1	2	3	2	2	3	19	16	13
ohénol	<0,03	<0,03	<0,025	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	0,5	<0,10	<0,10	<0,10	<0,1	<0,1	<0,1	0,18	0,17	<0,1	0,12	<0,1
	210	230	145	180	225	140	180	195	125	120	195	130
	30	30	40	70	20	10	30	40	30	35	20	35

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov	Déc.
	9,9	9,9	12	12,6	14	16,2	18,3	19,1	15	12,5	9,3	8,4
	7,4	7,5	7,55	7,3	7,4	7,8	7,6	7,3	7,25	6,9	7	7,3
	2	9	4	4	6	8	<2	<2	3	21	4	9
ohénol	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03
	0,23	<0,01	<0,01	0,47	<0,1	<0,1	<0,1	<0,1	0,11	<0,1	<0,1	<0,1
	190	110	190	115	170	155	220	190	118	140	192	130
	20	20	30	30	20	50	35	25	30	450	30	150

	Janv.	Fév.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
	4,6	8,4	9,5	12	14,4	17,2	15,6	18,3	16,6	12,9	10,2	8,1
	7,75	7,1	7,95	6,5	8	6,75	6,2	7,7	6,7	6,6	6,85	7,55
	<2	43	3	4	<2	<2	30	<2	3	4	8	4
ol	<0,03	<0,03	<0,03	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025
	<0,1	0,12	<0,1	<0,1	<0,1	<0,1	<0,1	0,1	<0,1	<0,1	0,1	<0,1
	202	149	214	124	213	160	58	182	170	145	55	127
	30	60	40	30	-	-	150	30	45	30	40	20

Annexe N° 9

Bilans annuels de la charge chimique des effluents gazeux rejetés par les deux cheminées des usines UP2-800 et UP3

Années 1966 à 2000

Masses en kilogramme par an

effluents gazeux rejetés par les deux cheminées des usines UP2 - 800 et UP3 de COGEMA La Hague

Mn	Ni	Pb	Sb	Sn	Te	TI	V	Zn	CH ₄	СО	NH ₄	N ₂ H ₄	N ₂ O	NO _X	SO ₂	Poussières
2,9E-04	1,5E-03	<6,0E-05	3,4E-05	3,4E-05	3,4E-05	9,0E-06	4,6E-05	3,0E-03	3745	6142	<u>4,5</u>	3,0	9737	<u>5018</u>	202	<u>15,0</u>
5,0E-04	2,6E-03	<1,0E-04	5,9E-05	5,9E-05	5,9E-05	1,5E-05	8,0E-05	5,2E-03	6439	10559	7,7	5,2	16740	8628	348	<u>25,8</u>
9,7E-04	5,0E-03	<2,0E-04	1,1E-04	1,1E-04	1,1E-04	3,0E-05	1,5E-04	9,9E-03	12417	20364	14,9	9,9	32285	16639	671	<u>49,7</u>
9,5E-04	6,0E-03	<2,4E-04	1,4E-04	1,4E-04	1,4E-04	3,6E-05	1,9E-04	1,2E-02	<u>15000</u>	<u>25000</u>	<u>18,0</u>	12,0	<u>39185</u>	20326	810	<u>60,0</u>
1,2E-03	6,2E-03	<2,5E-04	1,4E-04	1,4E-04	1,4E-04	3.7E-05	1,9E-04	1,2E-02	<u>15571</u>	<u>25536</u>	18,7	12,5	<u>40484</u>	20865	841	<u>62,3</u>
6,6E-04	3,4E-03	<1,3E-04	7,7E-05	7,7E-05	7,7E-05	2.0E-05	1.0E-04	6,7E-03	<u>8410</u>	13792	<u>10,1</u>	6,7	<u>21865</u>	11269	454	<u>33,6</u>
1,3E-03	6,6E-03	<2,6E-04	1,5E-04	1,5E-04	1,5E-04	3,9E-05	2.0E-04	1,3E-02	<u>16425</u>	26937	<u>19,7</u>	13,1	<u>42705</u>	22010	887	<u>65,7</u>
1,1E-03	5,6E-03	<2,2E-04	1,3E-04	1,3E-04	1,3E-04	3,4E-05	1,7E-04	1,1E-02	13994	22950	<u>16,8</u>	11,2	36385	18752	756	<u>56,0</u>
3,3E-03	1,7E-02	<6,7E-04	3,8E-04	3,8E-04	3,8E-04	1,0E-04	5,2E-04	3,3E-02	41720	68420	<u>50,1</u>	33,0	108471	<u>55904</u>	2253	<u>166,9</u>
2,3E-03	1,2E-02	<4,6E-04	2,7E-04	2,7E-04	2,7E-04	7,0E-05	3,6E-04	2,3E-02	28974	<u>47517</u>	34,8	23,0	75332	38825	1565	<u>115,9</u>
1,1E-03	5,7E-03	<2,3E-04	1,3E-04	1,3E-04	1,3E-04	3,4E-05	1,8E-04	1,1E-02	<u>14959</u>	23000	<u>17</u>	11	37494	<u>19285</u>	770	<u>57</u>
1,9E-03	9,6E-03	<3,8E-04	2,2E-04	2,2E-04	2,2E-04	5.8E-05	3.0E-04	1,9E-02	24000	39000	<u>29</u>	19	63000	32576	1300	<u>97</u>
2.0E-03	1,0E-02	<4,1E-04	2,4E-04	2,4E-04	2,3E-05	6,1E-05	3,2E-04	2,0E-02	26000	42000	<u>31</u>	20	67000	34000	1400	<u>102</u>
1.8E-03	9,0E-03	<3,6E-04	2,1E-04	2,1E-04	4,8E-05	5,4E-05	2,8E-04	1,8E-02	23000	37000	<u>27</u>	18	<u>59000</u>	30000	1200	<u>90</u>
1.8E-03	9,4E-03	<3,7E-04	2,2E-04	2,2E-04	6,3E-05	5,6E-05	2,9E-04	1,9E-02	23000	38000	<u>28</u>	19	61000	31000	1300	<u>94</u>
1,8E-03	9,2E-03	<3,7E-04	2,1E-04	2,1E-04	6,1E-05	5,5E-05	2,9E-04	1,8E-02	23000	38000	<u>28</u>	18	60000	31000	1300	<u>92</u>
1,9E-03	1,0E-02	<4,0E-04	2,3E-04	2,3E-04	9,3E-05	6,0E-05	3,1E-04	2,0E-02	22000	<u>41000</u>	<u>30</u>	20	65000	33000	1200	<u>100</u>
1,7E-03	8,9E-03	<3,6E-04	2,0E-04	2,0E-04	1,3E-04	5,3E-05	2,8E-04	1,8E-02	29000	36000	<u>27</u>	18	58000	30000	1200	<u>89</u>
2.3E-03	1,2E-02	<4,6E-04	2,7E-04	2,7E-04	1,5E-04	6,9E-05	3,6E-04	2,3E-02	30000	<u>47000</u>	<u>35</u>	23	<u>75000</u>	39000	1600	<u>116</u>
2,4E-03	1,2E-02	<4,8E-04	2,8E-04	2,8E-04	2,1E-04	7,3E-05	3,7E-04	2,4E-02	27000	50000	<u>36</u>	24	79000	40000	1600	<u>121</u>
2,1E-03	1,1E-02	<4,3E-04	2,5E-04	2,5E-04	2,0E-04	6,4E-05	3,3E-04	2,1E-02	32000	44000	<u>32</u>	21	70000	36000	1600	<u>107</u>
2,5E-03	1,3E-02	<5,2E-04	3,0E-04	3,E-04	2,6E-04	7,8E-05	4,0E-04	2,6E-02	39000	53000	<u>39</u>	26	84000	43000	1400	<u>130</u>
1,8E-03	9,1E-03	<3,6E-04	2,1E-04	2,1E-04	2,1E-04	5,5E-05	2,8E-04	1,8E-02	22712	37248	<u>27,3</u>	18,2	59052	30435	1700	<u>90,8</u>
2,4E-03	1,2E-02	<4,8E-04	2,8E-04	2,8E-04	2,8E-04	7,3E-05	3,7E-04	2,4E-02	30242	49596	<u>36,3</u>	24,2	78628	40524	1200	<u>121,0</u>
2,7E-03	1,4E-02	<5,5E-04	3,2E-04	3,2E-04	3,2E-04	8,3E-05	4,3E-04	2,8E-02	34558	<u>56675</u>	<u>41,5</u>	27,6	89851	46308	1866	<u>138,2</u>
3,4E-03	1,7E-02	<7,0E-04	4,0E-04	4,0E-04	4,0E-04	1,0E-04	5,4E-04	3,5E-02	43526	71383	52,2	34,8	113168	58325	2350	<u>174,1</u>
3,4E-03	1,8E-02	<7,0E-04	4,0E-04	4,0E-04	4.0E-04	1,1E-04	5,4E-04	3,5E-02	<u>43881</u>	<u>71965</u>	<u>52,7</u>	35,1	<u>114091</u>	<u>58801</u>	2370	<u>175,5</u>
4.9E-03	2,5E-02	<1,0E-03	5,8E-04	5,8E-04	5,8E-04	1,5E-04	7,8E-04	5,0E-02	62678	102792	<u>75,2</u>	50,1	162962	83988	3385	<u>250,7</u>
6.5E-03	3,4E-02	<1,3E-03	7,7E-04	7,7E-04	7,7E-04	2,0E-04	1,0E-03	6,7E-02	83853	<u>137519</u>	100,6	67,1	218018	112363	4528	<u>335,4</u>
8,0E-03	4,1E-02	<1,6E-03	9,4E-04	9,4E-04	9,4E-04	2,5E-04	1,3E-03	8,2E-02	102407	167947	122,9	81,9	266257	137225	5530	<u>409,6</u>
8,6E-03	4,4E-02	<1,8E-03	1,0E-03	1,0E-03	1,0E-03	2,7E-04	1,4E-03	8,8E-02	<u>110435</u>	<u>181114</u>	132,5	88,3	287131	147983	5963	<u>441,7</u>
8,6E-03	4,4E-02	<1,8E-03	1,0E-03	1,0E-03	1,0E-03	2,6E-04	1,4E-03	8,8E-02	<u>109719</u>	179939	131,7	87,8	285269	147023	5925	<u>438,9</u>
8.4E-03	4,3E-02	<1,7E-03	9,9E-04	9,9E-04	9,9E-04	2,6E-04	1,3E-03	8,6E-02	<u>107288</u>	175952	128,7	85,8	278949	<u>143766</u>	5794	<u>429,2</u>
8.0E-03	4,1E-02	<1,6E-03	9,4E-04	9,4E-04	9,4E-04	2,5E-04	1,3E-03	8,2E-02	102623	168087	123,1	82,0	<u>266821</u>	<u>137339</u>	5535	<u>410,0</u>
6.1E-03	3,1E-02	<1,3E-03	7,2E-04	7,2E-04	7,2E-04	1,9E-04	9,7E-04	6,3E-02	<u>78314</u>	<u>128000</u>	94,0	63	203617	<u>105000</u>	4200	<u>313</u>

t inférieures à la limite de détection

Annexe N° 10

Analyse des dioxines (PCDD) et des furanes (PCDF) émis par l'incinérateur de déchets banals de COGEMA La Hague

Années 1998 et 2000

Désignation du composé	Quantité piégée en ng	Facteur d'équivalence I-TEF en ng	Quantité corrigée suivant I-TEF
Tétrachlorodibenzodioxines	91,77		
Pentachlorodibenzodioxines	136,19		
Hexachlorodibenzodioxines	75,12		
Heptachlorodibenzodioxines	53,90		
Octachlorodibenzodioxines	38,62	0,001	0,04
Octaciliorodiberizodioxilles	30,02	0,001	0,04
Tétrachlorodibenzofuranes	188,84		
Pentachlorodibenzofuranes	108,55		
Hexachlorodibenzofuranes	57,20		
Heptachlorodibenzofuranes	25,99		
Octachlorodibenzofuranes	6,60	0,001	0,01
2, 3, 7, 8 - Tétrachlorodibenzodioxine	0,34	1	0,34
1, 2, 3, 7, 8 -Pentachlorodibenzodioxine	1,85	0,5	0,93
1, 2, 3, 4, 7, 8 - Hexachlorodibenzodioxine	1,22	0,1	0,12
1, 2, 3, 6, 7, 8 - Hexachlorodibenzodioxine	4,88	0,1	0,49
1, 2, 3, 7, 8, 9 - Hexachlorodibenzodioxine	3,83	0,1	0,38
1, 2, 3, 4, 6, 7, 8 - Heptachlorodibenzodioxine	26,59	0,01	0,27
2, 3, 7, 8 - Tétrachlorodibenzofurane	0,69	0,1	0,07
1, 2, 3, 7, 8 - Pentachlorodibenzofurane	3,69	0,05	0,18
2, 3, 4, 7, 8 - Pentachlorodibenzofurane	7,65	0,5	3,83
1, 2, 3, 4, 7, 8 - Hexachlorodibenzofurane	5,09	0,1	0,51
1, 2, 3, 6, 7, 8 - Hexachlorodibenzofurane	5,41	0,1	0,54
2, 3, 4, 6, 7, 8 - Hexachlorodibenzofurane	8,09	0,1	0,81
1, 2, 3, 7, 8, 9 - Hexachlorodibenzofurane	0,39	0,1	0,04
1, 2, 3, 4, 6, 7, 8 - Heptachlorodibenzofurane	14,69	0,01	0,15
1, 2, 3, 4, 7, 8, 9 - Heptachlorodibenzofurane	2,68	0,01	0,03
Total des PCDD / PCDF exprimé en I-TEQ	-	-	8,72

Date du prélèvement : 27-fév-98

Désignation de la mesure ou du résultat	Unité	Valeur	
Teneur en PCDD / PCDF			
Repère de l'échantillon Durée d'échantillonnage Volume de gaz secs prélevé Quantité de PCDD/PCDF piégée Teneur moyenne en PCDD/PCDF sur gaz secs dans les conditions de mesure Teneur moyenne en PCDD/PCDF ramenée à 11 % d'0 ₂	- mn Nm³ ng ng/Nm³	- - - -	98-0414 300 5,151 8,72 (I.TEQ) 1,69 (I-TEQ) 5,0

Date du prélèvement : 27-fév-98

Désignation du composé	Quantité piégée en pg	Facteur d'équivalence I- TEF	Quantité corrigée suivant I-TEF en pg
Tétrachlorodibenzodioxines	69213,26		
Pentachlorodibenzodioxines	38274,60		
Hexachlorodibenzodioxines	16275,40		
	3007,39		
Heptachlorodibenzodioxines		0,001	1.50
Octachlorodibenzodioxines	1504,76	0,001	1,50
Tétrachlorodibenzofuranes	102273,60		
Pentachlorodibenzofuranes	43191,10		
Hexachlorodibenzofuranes	17607,26		
Heptachlorodibenzofuranes	2876,83		
Octachlorodibenzofuranes	260,58	0,001	0,26
2, 3, 7, 8 - Tétrachlorodibenzodioxine	155,64	1	155,64
1, 2, 3, 7, 8 - Pentachlorodibenzodioxine	599,20	0,5	299,60
1, 2, 3, 4, 7, 8 - Hexachlorodibenzodioxine	240,31	0,1	24,03
1, 2,3, 6, 7, 8 - Hexachlorodibenzodioxine	738,52	0,1	73,85
1, 2, 3, 7, 8, 9 - Hexachlorodibenzodioxine	471,70	0,1	47,17
1, 2, 3, 4, 6, 7, 8 - Heptachlorodibenzodioxine	1389,31	0,01	13,89
2, 3, 7, 8 - Tétrachlorodibenzofurane	1434,94	0,1	143,49
1, 2, 3, 7, 8 - Pentachlorodibenzofurane	1289,36	0,05	64,47
2, 3, 4, 7, 8 -Pentachlorodibenzofurane	2509,77	0,5	1254,89
1, 2, 3, 4, 7, 8 - Hexachlorodibenzofurane	1594,73	0,1	159,47
1, 2, 3, 6, 7, 8 - Hexachlorodibenzofurane	1435,25	0,1	143,53
2, 3, 4, 6, 7, 8 - Hexachlorodibenzofurane	1160,37	0,1	116,04
1, 2, 3, 7, 8, 9 - Hexachlorodibenzofurane	49,96	0,1	5,00
1, 2, 3, 4, 6, 7, 8 - Heptachlorodibenzofurane	1881,28	0,01	18,81
1, 2, 3, 4, 7, 8, 9 - Heptachlorodibenzofurane	174,22	0,01	1,74
Total des PCDD/ PCDF exprimé en pg I-TEQ	-	-	2523,38

Date du prélèvement : 17/10/00

Teneur en PCDD / PCDF

Désignation	Unité	Incinérateur
Volume prélevé sec	Nm³	4,31
Quantité de PCDD/PCDF piégée	ng I-TEQ	2,52
Concentration en PCDD/PCDF - dans les conditions de mesure - dans les conditions réglementaires	ng/Nm ³ ng/Nm ³	0,58 1,92

Date du prélèvement : 17/10/00

Bilans annuels des rejets chimiques des fumées de l'incinérateur de déchets banals de COGEMA La Hague

Années 1995 à 2000

Masses en kilogramme par an

Années	1995	1996	1997	1998	1999	2000
Temps de fonctionnement (h/an)	1123	1989	3334	2529	1768	1825
As	0,07	0,12	0,20	0,15	0,11	0,11
Cd	1,71	3,03	5,08	3,85	2,69	2,78
Cu	3,84	6,81	11,41	8,66	6,05	6,25
Cr	<u>2,69</u>	<u>4,76</u>	<u>7,97</u>	<u>6,05</u>	<u>4,23</u>	<u>4,36</u>
Mn	1,12	1,98	3,33	2,52	1,76	1,82
Hg	0,29	<u>0,51</u>	<u>0,85</u>	<u>0,64</u>	<u>0,45</u>	<u>0,46</u>
Ni	0,82	<u>1,45</u>	<u>2,44</u>	<u>1,85</u>	<u>1,29</u>	<u>1,33</u>
Pb	59,40	105,21	176,36	133,78	93,52	96,54
SO ₂	1271	2251	3773	2862	2001	2065
NO _X	861	1525	2557	1940	1356	1400
CO	323	573	961	729	510	526
HCI	443	785	1316	998	698	720
HF	7,01	12,42	20,81	15,79	11,04	11,39
Poussières	885	1569	2630	1995	1394	1439
Dioxines	2,13E-05	3,77E-05	6,33E-05	4,80E-05	3,36E-05	3,46E-05

Les valeurs soulignées (Cr, Hg et Ni) sont inférieures à la limite de détection de la mesure

Bilans annuels des rejets chimiques des gaz de la chaufferie de COGEMA La Hague

Années 1964 à 2000

Masses en kilogrammes par an

Bilans annules des rejets chimiques des gaz de la chaufferie de COGEMA La Hague (Années 1964 à 2000) (masses en kg/a)

	Ca	Fe	Na	Ni	Si	Ti	V	NO_X	SO ₂	Poussières
1964	< 4,7	150	112	131	164	< 4,7	369	30091	260730	4878
1965	< 8,2	263	197	230	287	< 8,2	648	52862	458040	8569
1966	< 9,3	297	223	260	325	< 9,3	733	59775	517937	9690
1967	< 9,8	313	235	274	343	< 9,8	773	63028	546124	10217
1968	< 10.3	330	247	289	361	< 10,3	814	66371	575094	10759
1969	< 10,3	330	247	289	361	< 10,3	814	66371	575094	10759
1970	< 10,3	332	249	291	364	< 10,3	821	66914	579797	10847
1971	< 9,7	310	233	272	339	< 9,7	766	62467	541262	10126
1972	< 10,0	319	239	279	349	< 10,0	788	64199	556268	10407
1973	< 9,8	315	236	275	344	< 9,8	777	63311	548577	10263
1974	< 11.3	360	270	315	394	< 11,3	890	72534	628487	11758
1975	< 11,0	351	263	307	383	< 11,0	866	70563	611413	11439
1976	< 10,0	321	241	281	351	< 10,0	793	64611	559844	10474
1977	< 11,7	374	281	327	409	< 11,7	924	75314	652580	12209
1978	< 12,0	383	288	335	419	< 12,0	947	77160	668576	12508
1979	< 12,0	384	288	336	420	< 12,0	949	77329	670042	12535
1980	< 13,1	420	315	368	460	< 13,1	1038	84581	732878	13711
1981	< 14,0	447	335	391	489	< 14,0	1104	90002	779844	14590
1982	< 13.8	443	332	387	484	< 13,8	1093	89094	771977	14443
1983	< 14,5	463	347	405	506	< 14,5	1142	93123	806894	15096
1984	< 16,5	527	396	461	577	< 16,5	1302	106138	919666	17206
1985	< 17,6	562	422	492	615	< 17,6	1388	113134	980279	18340
1986	< 17,6	562	422	492	615	< 17,6	1388	113119	980149	18337
1987	< 19,4	620	465	542	678	< 19,4	1530	124700	1080502	20215
1988	< 23,6	756	567	661	826	< 23,6	1865	152058	1317552	24649
1989	< 25,6	819	614	716	896	< 25,6	2021	164772	1570000	26710
1990	< 19,8	633	475	554	693	< 19,8	1563	127453	1104355	20661
1991	< 26,7	855	641	748	935	< 26,7	2110	201000	1703000	27879
1992	< 27,3	873	655	764	955	< 27,3	2156	196000	1902000	28488
1993	< 29,2	935	701	818	1023	< 29,2	2309	218000	1971000	30506
1994	< 29,2	933	700	816	1020	< 29,2	2303	200000	1552000	30438
1995	< 36,6	1171	878	1025	1281	< 36,6	2891	152000	1211000	38206
1996	< 40,3	1291	968	1130	1412	< 40,3	3187	276000	2581000	43900
1997	< 37,9	1214	910	1062	1327	< 37,9	2996	257000	2237000	41100
1998	< 36,7	1175	881	1028	1285	< 36,7	2900	240000	2060000	40000
1999	< 36,1	1156	867	1012	1265	< 36,1	2854	245000	1854000	36000
2000	< 35,0	1121	841	981	1226	< 35,0	2768	150000	1220000	33700

Les valeurs en rouge et soulignées sont inférieures à la limite de détection

Produits de dégradation du solvant TBP-TPH

Présentation

COGEMA utilise un solvant organique dans ses usines de retraitement de La Hague.

Ce solvant utilisé est un mélange des deux produits suivants :

- un extractant (30 % en volume) : le tributylphosphate (TBP) : O=P-(O-C4H9)3 qui extrait sélectivement l'U(VI), le Pu (IV) et le Np (IV et VI)
- un diluant (70 % en volume) : le tétrapropylène hydrogéné (TPH). Le TPH est un hydrocarbure saturé constitué d'alcanes ramifiés C₁₀ à C₁₄ (centré en C12, environ 150 molécules ont été identifiées) chimiquement inerte et favorisant la séparation des phases après émulsion et diminuant la viscosité et la tension superficielle de la phase organique.

Les principales caractéristiques physiques et toxicologiques sont indiquées en annexe.

Produits de dégradation

Le TBP se dégrade principalement par action de **radiolyse** (ruptures de liaisons chimiques sous l'effet de radiations γ et des particules ionisantes α et β), **hydrolyse acide**.

La radiolyse conduit à la formation de radicaux libres qui se recombinent entre eux et réagissent avec les constituants du milieu dans lesquels ils sont. Le résultat de ces réactions et interactions conduisent à la formation de très nombreux produits différents appartenant à un certain nombre de grandes famille chimiques (alcanes aliphatiques et ramifiés, alcools, cétones, acide, nitro, nitrates, organoiodés et polymères ...).

Des études ont été menées pendant de nombreuses années pour identifier, quantifier et traiter les produits de dégradation du solvant.

Ces études concernent la simulation, le fonctionnement d'une bouche d'essai expérimentale et le suivi de la qualité du solvant des usines.

Les principales techniques analytiques utilisées sont :

- la chromatographie en phase gazeuse avec détection à ionisation de flamme,
- la spectrométrie infrarouge en mode réflexion (ATR),
- la RMN du 31P
- la spectrométrie de masse,
- la combinaison de ces techniques.

Les différents types de produits identifiés sont énumérés ci-dessous.

Produits de dégradation du TBP

Produits légers

Dérivés du butyle du TBP : alcools, cétones, acides, nitros, nitrates ... $(C_4H_9-OH, C_2H_5-C=O-CH_3, C_3H_7-COOH, C_4H_9-NO_2, C_4H_9-O-NO_2)$

Produits lourds

Acide dibutylphosphate (HDBP), acide monobutylphosphate (H₂MBP) et phosphate sont les produits les plus importants en masse,

Autres produits lourds identifiés

O₂N-TBP, HO-TBP, O₂N-O-TBP, organoiodés et les polymères associés.

Produits de dégradation du TPH

Produits légers

Alcanes à chaînes courte, éventuellement fonctionnalisés du type R-OH, R-CO-R', R-COOH, R-NO₂, R-O-NO₂, alcanes CnH_{2n+2} avec n = 10 à 14

Produits lourds

Types dimère, trimère, etc; du dodécane.

Produits d'addition

R-TBP ou organo phosphorés inférieurs

Gestion des solvants sur le site

Le solvant "tourne en rond" dans le procédé.

Il est purifié chimiquement et radiologiquement, à chaque tour, par un traitement en ligne à base de successions de lavages alcalins et acides, puis régénéré périodiquement par distillation et rectification.

Gestion en aval du traitement chimique :

les effluents aqueux des traitements solvants sont traités dans les stations de traitement des effluents liquides (STE) avant rejets en mer. Nous estimons que la partie majeure des produits de dégradation organique précipite ou se fixe par absorption, avec les boues de précipitation des STE et la partie complémentaire, dissoute dans le liquide surnageant, est rejetée en mer.

Dans le cas où les effluents aqueux des traitements de solvant ne sont pas compatibles avec les normes de la STE, il est prévu qu'ils soient concentrés puis regroupés avec les concentrats des solutions de produits de fission pour être vitrifiés (cas rare).

Les principaux produits de dégradation récupérés dans les solutions aqueuses des traitements solvant sont constitués des acides di, monobutyl et phosphoriques. Ces produits ainsi que d'éventuels autres produits organophosphorés se retrouvent dans la liste des 26 substances mesurées dans les rejets radioactifs types A + V sous la rubrique "phosphore total".

D'autres produits tels que les produits organiques polaires, présents en très faibles quantités, pourront aussi se retrouver dans les effluents aqueux. Il n'y a pas de mesure systématique des hydrocarbures dans les effluents rejetés, mais la valeur de la DCO (demande chimique en

oxygène) relevée dans les effluents est compatible avec les valeurs en TBP et nitrite (substances oxydables) des effluents et montre qu'il n'y a pas ou peu de place pour des quantités significatives de ces produits organiques polaires.

Gestion en aval de la distillation - rectification :

Les produits issus de la distillation ne sont pas recyclés dans le procédé. Ceci concerne :

- les résidus qui sont entreposés sur le site en vue de leur destruction dans une installation de pyrolyse existante sur le site,
- la fraction légère (les incondensables) qui rentre dans la gestion des rejets gazeux.
 Il s'agit des COV (Composés Organiques Volatifs).

Les produits issus de la rectification sont totalement recyclés dans les cycles d'extraction du procédé.

Gestion des autres sources potentielles de rejets de composés organiques :

Une partie de la phase solvant peut être véhiculée dans les effluents aqueux soit par solubilisation soit par entraînement.

Afin de maîtriser la partie du solvant entraînée mécaniquement, il s'effectue périodiquement des opérations appelées "chasse solvant" au niveau des cuves d'effluents. Le solvant récupéré est alors réintroduit dans le procédé.

La quantité des composés organiques solubilisés dans une phase aqueuse est minimisée par :

- un lavage des effluents aqueux avec du diluant en sortie des cycles d'extraction,
- une forte destruction lors des opérations de concentration.

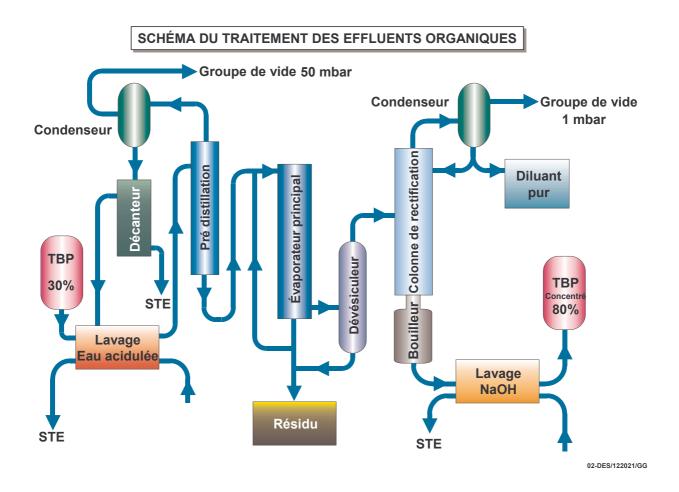
En conclusion, les produits organiques "traversant" la gestion des effluents aqueux se retrouveront :

- majoritairement dans les effluents à haute activité envoyés à la vitrification où ils sont détruits,
- partiellement dans les flux réintroduits dans le procédé soit transférés à la STE,
- potentiellement pour les composés incondensables dans les COV de la gestion des effluents gazeux.

Caractéristiques du TBP et du TPH

Tributylphosphate (TBP)

- masse molaire : 266,3 g
- masse volumique : 0,973 g/cm³ à 25°C (solvant : mélange TPH 70% + TBP 30 % masse volumique = 0,77 g/cm³)
- température d'ébullition : 284 °C,
- solubilité dans l'eau : 0,3 q/l.


Rappel des éléments de toxicité du TBP cités dans le dossier d'enquête publique COGEMA de décembre 1998, basés sur des études et tests réalisés par l'IPSN (Laboratoire de Radioécologie Marine) et l'Institut National des Techniques de la mer (rapport INTECHMER de janvier 1987 par Daniel BENTLEY et Pierre MIRAMAND).

- Biodégradabilité à 92 % après 28 jours (test OCDE 301D),
- aucun effet mutagène observé,
- aucun effet bactériologique observé,
- DL50 chez le rat par voie orale de 1 550 mg/kg,
- CL50 sur les poissons de 8,18 mg/l en 96 heures,
- CE50 sur daphnies de 3,65 mg/l en 48 heures,
- CE50 sur les algues : 2,8 mg/l en 72 heures.

Tétrapropylène Hydrogéné (TPH)

- Point d'ébullition : 188°C à 212°C,
- Masse volumique de 0,76 g/ml à 20°C.

Schéma du traitement des effluents organiques

Cantrola EDE da Elamanyilla
Centrale EDF de Flamanville

INTRODUCTION

La centrale EDF de Flamanville, implantée sur la côte Ouest du Nord-Cotentin comprend deux réacteurs à eau pressurisée (REP) de puissance unitaire 1300 MWe. Ces deux réacteurs ont été couplés successivement au réseau en décembre 1985 et juillet 1986.

Afin de faciliter la lecture du chapitre relatif à la composition chimique des différents types d'effluents liquides générés par la centrale, on rappelle succinctement ci-après le fonctionnement d'un réacteur nucléaire.

1. Rappel sur le fonctionnement de la centrale

Dans une centrale nucléaire, comme dans toute centrale thermique, l'énergie thermique libérée par le combustible (dans ce cas la fission des noyaux d'uranium), est transformée en énergie mécanique par l'intermédiaire de la vapeur d'eau produite dans les générateurs de vapeur, qui actionne une turbine entraînant l'alternateur qui délivre le courant électrique aux transformateurs du site.

Une centrale nucléaire comprend trois circuits principaux séparés les uns des autres par des barrières étanches.

1.1.Le circuit primaire

Le circuit primaire est enfermé dans une double enceinte en béton qui constitue le bâtiment réacteur.

Il extrait la chaleur produite par la réaction nucléaire à l'intérieur du réacteur et la transmet par les générateurs de vapeur à un autre circuit complètement séparé : le circuit secondaire.

Il est constitué essentiellement du réacteur et de quatre "boucles" de refroidissement.

Le réacteur est une cuve métallique enfermant le combustible nucléaire (cœur du réacteur). Il est équipé de barres de commande qui permettent le contrôle de la réaction nucléaire.

Chaque "boucle" est constituée :

- d'un générateur de vapeur où la chaleur du circuit primaire est transférée au circuit secondaire,
- d'une pompe primaire, qui à la sortie du générateur de vapeur, renvoie l'eau vers la cuve du réacteur.

Sur l'une des boucles, est installé un pressuriseur qui maintient l'eau du circuit primaire sous forte pression pour l'empêcher d'entrer en ébullition.

Le circuit primaire est alimenté en eau déminéralisée conditionnée avec de l'acide borique dont les propriétés "neutrophages" sont utilisées pour piloter la réaction nucléaire, et de la lithine (hydroxyde de lithium) destinée à maintenir le pH à une valeur protégeant les aciers de la corrosion.

L'eau du circuit primaire est traitée en permanence pour ajuster son volume et son conditionnement au niveau d'usure du combustible et à la charge de la centrale.

1.2. Le circuit secondaire

A la sortie de chaque générateur de vapeur, la vapeur est collectée par des tuyauteries qui la dirigent dans la salle des machines vers une turbine couplée à l'alternateur.

La vapeur est condensée à la sortie de la turbine, et l'eau renvoyée aux générateurs de vapeur.

Le circuit secondaire est alimenté également en eau déminéralisée conditionnée pour éviter la corrosion dans le circuit. On utilise pour ce faire l'hydrazine (hydrate d'hydrazine), agent antioxydant et, à Flamanville, l'ammoniaque qui maintient dans le circuit un pH supérieur à 9 tant en phase liquide qu'en phase vapeur.

1.3. Le circuit de refroidissement

La vapeur qui sort de la turbine doit être condensée avant d'être renvoyée aux générateurs de vapeur. Pour cela, il est nécessaire de disposer d'une source froide.

Dans le cas du site de Flamanville, la source froide est l'eau de mer. Cette eau circule dans les tubes du condenseur et la vapeur du circuit secondaire se condense au contact de ces tubes froids.

L'eau de mer du circuit de refroidissement est traitée par injection d'hypochlorite de sodium (eau de javel) produite sur place par électrolyse de l'eau de mer, afin de limiter le développement d'organismes fixés (bryozoaires, moules, ...). Ce traitement est réalisé tant que la température de l'eau de mer dépasse 10°C.

D'autres circuits d'importance bien moindre en volume existent pour le refroidissement des auxiliaires de l'îlot nucléaire et de la salle des machines. Ils sont alimentés en eau déminéralisée conditionnée au phosphate trisodique pour prévenir leur corrosion. Fonctionnant en circuit fermé, ils peuvent faire l'objet de vidanges partielles pour entretien et nettoyage des échangeurs.

La figure N° 1 en annexe illustre le schéma de fonctionnement d'une tranche nucléaire refroidie en circuit ouvert en bord de mer.

2. Origine des effluents

Le schéma des circuits de rejets des substances chimiques est en annexe de ce document.

Les effluents rejetés par la Centrale Nucléaire de Flamanville ont plusieurs origines qui sont liés à :

2.1. La plateforme industrielle

Comme tous les sites industriels, la Centrale de Flamanville rejette les eaux pluviales collectées sur les zones imperméabilisées du site (voiries, parkings, toitures...) et les eaux vannes et usées provenant des sanitaires et cantines après traitement dans une station d'épuration. Les eaux collectées sur les zones susceptibles d'être polluées par des hydrocarbures (salle des machines, transformateurs principaux, stockage d'hydrocarbures, huilerie de site, ...) sont collectées par un circuit particulier et traitées sur décanteur-déshuileur avant rejet.

2.2 Les circuits d'eau

Les circuits d'eau présentés ci-dessus (circuit de refroidissement des condenseurs excepté) sont à l'origine d'effluents qui proviennent de purges de ces circuits pour respecter les spécifications radiochimiques, de vidanges pour maintenance et entretien ou de la collecte des fuites. Ces effluents sont, si nécessaire et selon les circuits, traités spécifiquement selon leur nature et dirigés vers des réservoirs de stockage pour contrôle avant rejet. La production d'eau déminéralisée destinée à l'alimentation de ces circuits est également source d'effluents constitués des sels de régénération des résines échangeuses d'ions. Ils sont neutralisés avant rejet.

2.3. Les services généraux

On retrouve dans cette catégorie d'effluents des produits de nettoyage et d'entretien des locaux parmi lesquels la majeure partie est constituée par les effluents de la laverie du site (lavage des tenues contaminées) qui, après filtration, sont envoyés dans les réservoirs de stockage des effluents radioactifs. Ces effluents sont à l'origine des détergents rejetés par le site.

3. Caractéristiques et modes de rejet des différents effluents

La totalité des effluents collectés est rejetée par les ouvrages de rejets principaux à raison d'un par tranche (soit deux pour la centrale de Flamanville), et diluée dans le débit des eaux de refroidissement d'une tranche. Ces ouvrages sont constitués d'un bassin de rejet raccordé à une galerie sous-marine qui débouche, par un puits vertical, dans les ouvrages de rejet implantés à environ 300 m au large de la côte sur des fonds à 15 m au-dessous du niveau de la mer.

3.1. Eaux vannes et usées

Ces effluents proviennent des bâtiments des cantines et des installations sanitaires du site. Après traitement d'assainissement dans deux stations d'épuration et contrôle de la qualité de l'effluent, ce dernier est rejeté avec un débit journalier d'environ 150 m³/j.

3.2. Eaux pluviales

Elles sont renvoyées soit dans le canal de prise d'eau, soit directement en mer. Ces eaux font l'objet d'un contrôle trimestriel.

3.3. Eaux dites "eaux huileuses"

Il s'agit d'eaux susceptibles d'être polluées par des hydrocarbures et qui sont collectées par le circuit des eaux huileuses (SEN).

Ces effluents subissent un traitement sur décanteur-déshuileur. Les effluents à l'aval du déshuileur sont rejetés en mer après dilution dans les eaux du circuit de refroidissement. La concentration moyenne maximale sur 24 h dans l'effluent avant rejet est de 0,25 µg/l pour un flux journalier n'excédant pas 2 kg comme indiqué dans l'annexe N° 1.

3.4. Effluents de production d'eau déminéralisée

Le procédé de production d'eau déminéralisée comprend un premier traitement de floculation par ajout de chlorure ferrique afin d'éliminer les particules colloïdales en suspension qui risqueraient de colmater progressivement les lits de résines échangeuses d'ions.

La régénération des résines est effectuée par passage d'une solution d'acide sulfurique (résines cationiques) et de soude (résines anioniques). Les solutions d'effluents correspondantes sont ensuite neutralisées et diluées par l'eau du circuit de refroidissement avant rejet.

Les substances chimiques présentes résultant directement des opérations précédentes sont donc des ions ferriques (Fe³⁺), chlorures (Cl⁻), sulfate (SO₄²⁻) et sodium (Na⁺).

Le rejet de ces effluents est réalisé par vidange de fosse de 350 m³ de volume, à raison d'une vidange journalière en moyenne.

Les concentrations des éléments chimiques ainsi que les flux journaliers moyens et maximaux font l'objet de l'annexe N°2.

3.5. Effluents chimiques associés aux effluents radioactifs

Ces effluents proviennent de l'îlot nucléaire proprement dit, c'est-à-dire du circuit primaire des réacteurs et des circuits annexes associés ainsi que des exhaures des salles des machines, potentiellement radioactifs.

Ils subissent des traitements de décontamination afin de diminuer leur activité radioactive avant rejet.

Les effluents du circuit primaire sont collectés après traitement approprié à leur nature, et stockés dans des réservoirs T de 750 m³ pour contrôle avant rejet. Par tranche, le volume mensuel de rejet correspond à environ 2 réservoirs, soit 1500 m³. Avant rejet, ces effluents sont dilués d'un facteur au moins 500 dans l'eau du circuit de refroidissement. Le volume annuel rejeté est d'environ 10 000 m³ par tranche (8000 m³ en 1998 et 1999).

Les produits chimiques prépondérants sont les produits de conditionnement du circuit primaire, à savoir l'acide borique (H_3BO_3) et, de façon moindre, la lithine (LiOH) et les détergents de la laverie de site.

Les effluents du circuit secondaire sont également collectés et stockés dans des réservoirs appelés "Ex" de 750 m³. Le volume de rejet, après dilution par l'eau du circuit de refroidissement, est d'un à deux, exceptionnellement, réservoirs par jour.

Le volume annuel rejeté par tranche est de l'ordre de 100 000 m^3 . Les produits chimiques présents sont ceux servant au conditionnement du circuit secondaire, à savoir l'hydrate d'hydrazine (N_2H_5OH), la morpholine (remplacée depuis 1989 par l'ammoniaque pour maintenir le pH légèrement basique recherché), ainsi que les produits provenant des circuits auxiliaires comme le phosphate trisodique (Na_3PO_4).

Ce sont ces effluents qui sont les contributeurs majeurs aux rejets chimiques du site.

Les quantités rejetées annuellement pour chacun des composés mentionnés précédemment, depuis la mise en service des réacteurs en 1986 jusqu'à l'an 2000 inclus sont reportées sur l'annexe N° 2 en annexe. Les annexes N° 3, 4 et 5 présentent de façon plus détaillée les rejets de juin 2000 à avril 2001 en indiquant les concentrations mesurées dans l'effluent avant rejet en mer

Les concentrations en hydrazine, ammonium et phosphore total ne dépassent pas respectivement 2 μ g/l, 200 μ g/l et 20 μ g/l.

3.6. Eaux de refroidissement

Il s'agit essentiellement de l'eau de refroidissement des condenseurs et des circuits auxiliaires.

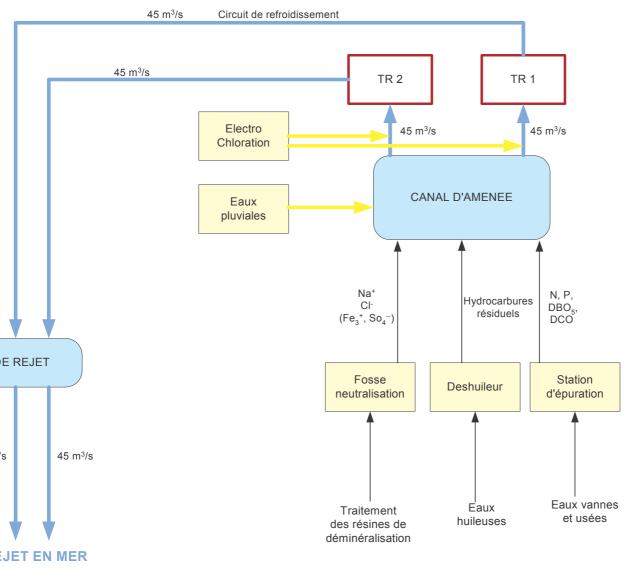
Ces effluents de gros débit sont rejetés en continu à raison d'environ 45 m³/s par tranche, le débit maximal de rejet total pour le site de Flamanville étant de l'ordre de 90 m³/s.

Pour éviter le développement de microorganismes, l'eau est traitée par chloration avec un échauffement maximal de 15 °C. Les produits chimiques présents dans l'eau rejetée sont les produits résiduels du procédé de chloration, à savoir des ions hypobromites (BrŌ) à une concentration maximale de 0,15 mg/l (soit un flux journalier de 1200 kg) et des triholométhanes type bromoforme (CHBr₃) à une concentration maximale de 0,015 mg/l (soit un flux journalier de 120 kg). Comme mentionné précédemment, ces eaux sont utilisées pour assurer une prédilution des autres effluents avant rejet.

La chloration est en service tant que la température de l'eau de mer dépasse 10° C ce qui à Flamanville couvre une période allant de mai à décembre soit 8 mois soit 240 jours. Le bromoforme est un sous produit de la chloration. L'ion ClO^{-} réagit avec le brome de l'eau de mer pour donner BrO^{-} qui réagit à son tour avec les composés réduits de l'azote pour former du bromoforme. La concentration de ce sous produit dans l'effluent n'est donc pas constante et fluctue en fonction des caractéristiques physico-chimiques du milieu. Le flux 24 h de 120 kg correspond au flux maximal autorisé par l'arrêté de rejet du site, il a été calculé à partir de la concentration maximale mesurée avant rejet sur toute la période d'exploitation passée de la centrale, soit $12~\mu g/l$. Au point de rejet en mer, les mesures réalisées par IFREMER n'ont pas mis en évidence la présence de bromoforme, avec un seuil de détection de $4~\mu g/l$. Si l'on considère que les concentrations au rejet fluctuent entre 0~ et $12~\mu g/l$ selon une distribution gausssienne, une valeur moyenne de $6~\mu g/l$ ou 60~ kg/j peut être retenue sur une période de 240 jours pour ce qui est d'étudier un effet chronique du bromoforme.

4. Produits chimiques courants utilisés sur le site

A la demande du groupe de travail "Rejets chimiques", EDF a fourni la liste et les quantités de réactifs chimiques usuels utilisés sur le site de Flamanville en 1998 et 1999 (savon liquide, solvant, dégraissant, alcool éthylique, acide nitrique). Ces quantités exprimées en litres par an sont reportées sur l'annexe N° 6.


5. Contrôle des substances chimiques rejetées

Les rejets chimiques font l'objet de contrôles soit au titre de l'arrêté préfectoral d'autorisation de rejets dans l'eau soit, pour les substances chimiques associées aux effluents radioactifs au titre de l'arrêté d'autorisation de rejets radioactifs liquides. Ces arrêtés définissent la périodicité et la nature des contrôles à réaliser, ou faire réaliser, par l'exploitant.

A noter que depuis le 11 mai 2000, le nouvel arrêté autorisant les rejets radioactifs et non radioactifs de la centrale de Flamanville a renforcé les contrôles sur les substances chimiques.

En complément à ces contrôles portant sur l'effluent, une surveillance hydrobiologique du milieu marin est réalisée par IFREMER. Elle a pour objet d'une part de déterminer l'impact des rejets dans le champ proche de ceux-ci et, d'autre part de suivre l'évolution du milieu marin dans un champ plus lointain. Cette surveillance est en place depuis la mise en service de la première tranche de la centrale en 1986.

La fréquence des mesures réalisées pour les différents effluents ainsi que les différents contrôles réalisés dans le milieu marin sont résumés dans l'annexe N° 7.

substances chimiques

Annexes

Centrale de Flamanville

Eaux huileuses "Centrale de Flamanville"

ORIGINE

- Salle des machines,
- Zones de dépotage, stockage d'hydrocarbures,
- Transformateurs.

TRAITEMENT

Décanteur - Déshuileur

REJETS: Hydrocarbures

- Débit maximal : environ 5000 m³/24 h,
- Flux maximal: environ 2kg/24 h,
- Concentration maximale (24 h) = 0,24 μg/l

Effluents de production d'eau déminéralisée "Centrale de Flamanville"

ORIGINE

- Floculation au FeCl₃ (chlorure ferrique)
- Régénération acide et basique des résines

TRAITEMENT: Neutralisation

REJETS: Sels (Fe - CI - SO₄ - Na)

Débit = vidange de 1 à 2 bâches/j (350 m³)

	Flux max. 24 h	Flux moy. 24h	Conc. max. 24 h au rejet
Fe ⁺⁺⁺	50 kg	15 kg	6 μg/l
SO ₄	2400 kg	900 kg	0,3 mg/l
Na [†]	800 kg	250 kg	0,1 mg/l
CI.	160 kg	40 kg	20 μg/l

Substances chimiques associées aux effluents radioactifs "Centrale de Flamanville"

Masses en kilogramme par an

uents radioactifs "Centrale de Flamanville"

88	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
00	18600	18800	10200	18000	8810	13700	13600	7870	13700	14600	11100	6920
00	9,00	0,60	4,45	1,30	0,63	2,00	1,75	0,04	0,93	2,10	2,11	1,60
5	316	19	31	19	9	59	20	76	51	31	58	22
0	0	0	0	0	0	0	0	0	0	0	0	0
59	3100	3240	3460	16000	7520	8550	16600	13700	9840	12800	7210	10100
96	1670	1050	816	1200	870	1100	1850	1600	1030	685	586	790
	-	-	-	1360	990	1370	1390	1660	-	600	1000	-

n Production Nucléaire unes / Groupe Environnement

Rejets des réservoirs EX "Centrale de Flamanville"

Juin 2000 / Avril 2001

manville" (Juin 2000 - Avril 2001)

Hydrazine			Ammonium		Phosphore total		
Q / réservoir (kg)			C. l'effluent (µg/l)	Q / mois (kg)	Q / réservoir (kg)	C. l'effluent (µg/l)	
0,026	Min. 0,001 Moy. 0,021 Max. 0,12	890	46	0,095 64 190	9,6	0,5	0,002 0,51 2,9
0,010	0,001 0,018 0,043	1400	56	0,027 110 190	19	0,75	0,009 1,2 8,4
0,010	0,001 0,018 0,046	1200	57	0,011 110 180	17	0,80	0,028 1,1 4,8
0,048	0,001 0,088 1,5	960	33	0,021 60 180	15	0,5	0,023 0,73 8,8
0,018	0,001 0,029 0,120	610	32	0,089 55 150	55	2,9	0,17 5 17
0,107	0,001 0,21 0,35	680	23,5	0,060 46 140	45	1,6	0,0003 2,9 14
0,045	0,012 0,027 0,069	630	28,6	0,16 60 160	19	0,9	0,0003 1,8 12
0,030	0,001 0,033 0,29	1200	46	0,21 9,3 200	8	0,35	0,003 0,056 3
0,008	0,001 0,015 0,057	750	62,5	0,086 11 180	18	1,5	0,01 2,9 10
0,088	0,005 0,18 2	1900	79	0,095 12 200	33	1,4	0,016 2,7 20
0,092	0,001 0,016 0,75	860	66	0,014 11 200	9,9	0,75	0,003 1,6 6,2

ejet en mer

Rejets d'acide borique "Centrale de Flamanville"

Juin 2000-Avril 2001

Mois	Q / réservoir T	C. réservoir T	C. ajoutée dans effluent
	(kg)	(mg/l)	(μg/l)
Juin	120	130	19,5
Juillet	67	97	9,5
	19	29	1,75
Août	300	460	35,5
	360	540	30
Septembre	320	470	32,5
	3800	5800	435
	720	1100	125
	140	290	40
Octobre	180	290	26
	50	74	42
Novembre	140	230	18,5
	100	150	18
Décembre	84	130	11,5
	62	91	9,5
Janvier	120	170	1
	18	34	1,5
	11	17	0,9
Février	20	29	3,5
	210	350	20
Mars	84	130	18
	39	57	5
Avril	310	460	32
	110	170	14

Q : quantité massique

C : concentration dans l'effluent avant rejet

Annexe N° 6

Substances chimiques conventionnelles "Centrale de Flamanville"

Années 1998 et 1999

Litres par an

	1998	1999
Savon liquide	3	18
Solvant (N60, N120)	295	175
Dégraissant (Quantum, Asorel)	370	370
Alcool éthylique	20	25
Acide nitrique	5	5

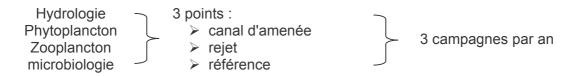
Les produits sont exempts de tout halogéne

Annexe N° 7

Mesures - contrôles

"Centrale de Flamanville"

DANS L'EFFLUENT (ancien arrêté de rejet)

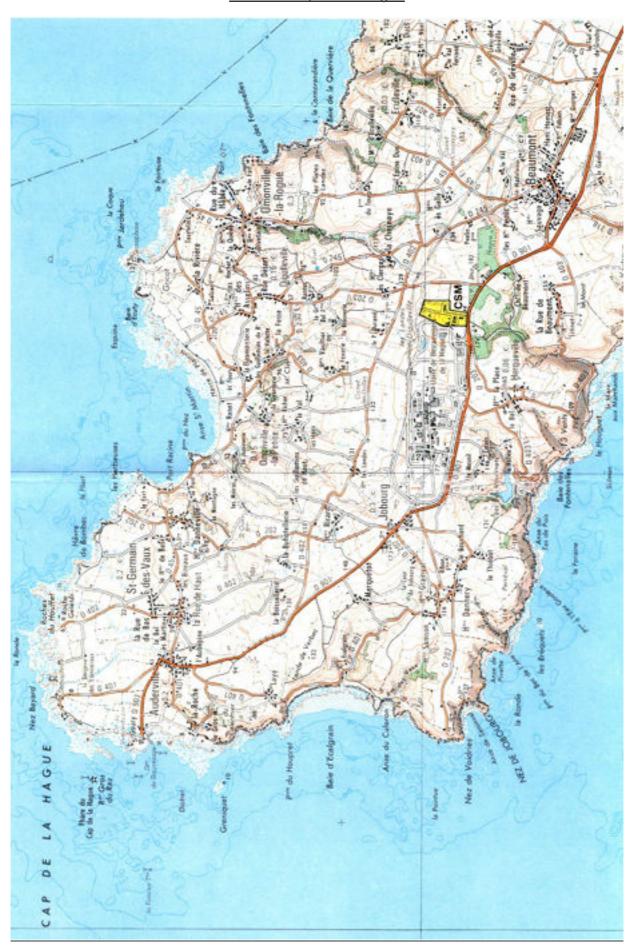

Effluents provenant de :

DANS LE MILIEU

Surveillance hydrobiologique (IFREMER)

• Domaine pélagique

• Domaine benthique


Phytobentos (fucus) Zoobenthos (substrats durs intertidaux)

Domaine halieutique

Suivi de la pêcherie Suivi des crustacés (reproduction)

Centre	de s	tocka	ige de	e la	Manche	

Carte du Cap de La Hague

Introduction

D'une superficie d'environ 15 hectares, le Centre de Stockage de déchets radioactifs de la Manche se trouve sur la bordure sud de la commune de Digulleville dans une zone de landes de plusieurs centaines d'hectares. Il est implanté à l'Est de l'établissement COGEMA La Hague avec lequel il possède une clôture mitoyenne. Une zone d'activités (zone industrielle de Digulleville) se situe en bordure Ouest du Centre.

Le site du Centre de la Manche est localisé dans la région agricole de La Hague, essentiellement tournée vers l'élevage et la production laitière.

La présence de la bordure maritime à faible distance du Centre de la Manche (entre 3 et 6 km) et presque tout autour de son périmètre, donne un caractère océanique (températures douces et pluviométrie assez importante d'environ 1000 mm/an) à son cadre physique.

Le Centre de la Manche (CM) a été le premier Centre en France, destiné au stockage en surface de déchets radioactifs de faible ou moyenne activité, mis en service.

Le Centre a reçu les premiers colis de déchets à partir de 1969.

Sa gestion a d'abord été assurée par la société INFRATOME de 1969 à 1978, puis par l'Office de Gestion des Déchets (OGD) de 1978 à fin 1979 et enfin depuis cette date jusqu'à nos jours par l'Agence Nationale pour la gestion des Déchets Radioactifs (ANDRA), initialement créée au sein du CEA, qui est devenue un Etablissement Public Industriel et Commercial (EPIC) par la loi du 30 décembre 1991.

Le Centre de la Manche a reçu les derniers colis de déchets en juin 1994, ce qui correspond à une période d'exploitation de 25 ans.

Après mise en place de la couverture du Centre en 1997, l'entrée en phase de surveillance étant de nature à entraîner l'inadéquation des prescriptions imposées au titre de l'exploitation du Centre, une nouvelle autorisation de création a été sollicitée sur la base d'un dossier de demande d'autorisation de passage en phase de surveillance. Cette demande a été soumise à enquête publique à la fin de l'année 1995, à l'issue de laquelle la commission d'enquête publique présidée par Monsieur Jean PRONOST a émis un avis favorable. Par ailleurs, le gouvernement a mis en place en février 1996, sous la présidence de Monsieur Michel TURPIN, une Commission chargée d'évaluer la situation du Centre de la Manche et de donner un avis sur l'impact du Centre. Les recommandations de la Commission TURPIN concernant le déroulement de la phase de surveillance du Centre, reprises par l'ANDRA, ont conduit le gouvernement à souhaiter qu'une nouvelle enquête publique soit effectuée. L'ANDRA a donc déposé une nouvelle demande d'autorisation de création (DAC) tenant compte de ces recommandations et une demande d'autorisation de rejets (DAR). Ces deux dossiers, soumis à enquêtes publiques conjointes, ont reçu un avis favorable en juin 2000. A fin mai 2002, le décret d'autorisation de passage en phase de surveillance et l'arrêté d'autorisation de rejets ne sont pas encore publiés. Officiellement, le Centre de la Manche n'est pas encore entré en phase de surveillance.

Conformément aux recommandations faites par la "Commission TURPIN", il est retenu le principe du déroulement d'une surveillance en deux phases principales :

- une première phase "active", pendant laquelle la présence de l'ANDRA sur le Centre demeurera nécessaire pour assurer le suivi et l'entretien du Centre ainsi que la surveillance de l'environnement. Cette période peut elle-même se décomposer en deux parties :
- une phase dite "très active" d'environ 5 à 10 ans, visant à observer le comportement de l'actuelle couverture et à en vérifier les résultats, en matière d'impact;
- la phase "active" proprement dite d'une durée de 50 à 100 ans, destinée à compléter le retour d'expérience et étudier les modifications techniques éventuelles qui s'avéreraient nécessaires pour rendre le Centre le plus passif possible, en matière de surveillance et de maintenance.
- une deuxième phase dite "passive", pendant laquelle un abandon total du Centre n'entraînerait pas de conséquence inacceptable pour l'environnement. Pendant et au-delà de cette phase, les seules contraintes se limiteront au maintien de servitudes et à la conservation de la mémoire du Centre. A titre de précaution, l'ANDRA assurera une surveillance réduite du Centre et de son environnement.

1. Inventaire chimique des déchets stockés au centre de la Manche

Les règles d'acceptation des déchets ont suivi, depuis 1969, l'évolution de la réglementation. Depuis 1979, ne sont admis en stockage que les déchets solides ou rendus tels, dont la nuisance potentielle principale a pour origine la radioactivité. Les déchets ne doivent pas contenir de liquides organiques ; ils ne doivent pas non plus contenir de liquides aqueux libres ou susceptibles de se libérer en quantités appréciables. Ne sont pas acceptables les déchets contenant du sodium métallique ou des alliages de sodium, ni de façon générale ceux susceptibles de donner lieu spontanément à des réactions chimiques violentes, ou à des toxiques biologiques.

Les déchets faiblement radioactifs reçus et stockés au CM de 1969 à 1994 proviennent de différents producteurs industriels nucléaires dont les principaux sont :

- EDF pour ce qui concerne les déchets provenant des réacteurs,
- COGEMA La Hague pour ce qui concerne les déchets du cycle du combustible (retraitement en particulier),
- CEA pour ce qui concerne les déchets provenant des Centres d'études civils et militaires (DAM),
- Rhône-Poulenc et le CEA (ancien Centre du Bouchet dans l'Essonne) pour ce qui concerne les déchets radifères.

Une première estimation qualitative et quantitative des différentes espèces chimiques présentes dans les déchets a été réalisée et présentée dans le dossier préliminaire de passage en phase de surveillance (D3PS) de 1994. Cette estimation était basée sur les résultats de la Commission du conseil scientifique du CEA sur les questions scientifiques et techniques relatives à la gestion des déchets radioactifs et sur celles relatives aux "Déchets Mixtes" (mars 1992).

Cette enquête a été approfondie pour compléter les données auprès des principaux producteurs EDF, COGEMA La Hague, CEA civil, CEA militaire.

Le recensement qualitatif et quantitatif des espèces chimiques a été fait sur la base d'une liste de toxiques chimiques établie par l'ANDRA, qui comprend des éléments susceptibles d'être stockés en quantité non négligeable et/ou réputés pour leur toxicité chimique à savoir : plomb, bore, nickel, chrome, antimoine, sélénium, cadmium, mercure, béryllium, arsenic, cyanures libres.

C'est l'inventaire de ces espèces qui a fait l'objet de recherches *a posteriori* en vue d'une estimation des quantités présentes dans le stockage. L'inventaire établi pour être présenté dans le rapport préliminaire de passage en phase de surveillance (R3PS) de 1998 se focalise donc sur les données relatives aux éléments de la liste ANDRA.

Le **tableau N° 1** constitue l'inventaire des toxiques chimiques tel que présenté dans le rapport préliminaire de passage en phase de surveillance de 1998. Il précise, outre les masses recensées, les formes chimiques associées ainsi que l'origine des déchets correspondants.

Parmi les éléments de la liste d'espèces recherchées, l'antimoine, l'arsenic et le sélénium n'ont pas été identifiés dans les déchets.

miques recensés dans les déchets du CM (extrait du rapport de sûreté de 1998)

Ecrans de protection biologique dans les colis de déchets irradiants	17500 tonnes
Résidus radifères (Le Bouchet et Rhône-Poulenc)	2300 tonnes
Dans une partie des fûts de boues bitumées de COGEMA La Hague Marcoule	0.9 tonne
Colis de concentrats (EDF, CEA Cadarache)	222 tonnes
Résines échangeuses d'ions (EDF)	ZZZ (OTITIES
Colis de résines échangeuses d'ions et de filtres (EDF)	11.4 tonnes
Réactif d'insolubilisation de certains radionucléides, boues bitumées	10.1 tonnes
(COGEMA La Hague Marcoule, CEA Saclay, CEA Cadarache)	
Anciens colis de boues bitumées (CEA Valduc)	0.2 tonne
Colis de filtres (EDF)	1.5 tonnes
Anciens colis de boues bitumées (CEA Valduc)	0.1 tonne
Issu d'un procédé de décontamination (CEA Saclay)	0.5 tonne
Concentrats (CEA Cadarache)	0.1 tonne
Colis de boues bitumées CEA Valduc	10.2 tonnes
Feuilles métalliques (COGEMA La Hague Marcoule)	1.0 tonne
Déchets solides (CEA Valduc)	4.1 tonnes
Fûts de COGEMA La Hague Pierrelatte	0.879 tonne
CEA, Directions des Applications Militaires	0.007 tonne
CEA Cadarache	0.001 tonne
CEA Cadarache	0.005 tonne

Par ailleurs, l'uranium, largement étudié dans le cadre de l'évaluation de l'impact radiologique du Centre, est un élément qui présente une toxicité chimique. L'ANDRA inscrit par conséquent cet élément dans la liste des espèces considérées comme toxiques.

L'inventaire massique de l'uranium stocké dans les déchets du Centre de la Manche a été calculé à partir de l'inventaire radiologique de ses différents radioisotopes (234, 235, 236, 238 etc.).

Le **tableau N° 2** précise l'inventaire radiologique associé à l'uranium ainsi que les masses correspondantes.

<u>Tableau N° 2 : Inventaire en uranium dans les déchets du CM (extrait du rapport préliminaire de passage en phase de surveillance de 1998)</u>

Isotope	Inventaire en GBq	Masse (tonnes)	Masse totale (tonnes)
²³⁵ U	261	3,26	
²³⁸ U	3250	261,18	
²³² U	99,4	1,25.10 ⁻⁷	264.5
²³³ U	5,35	1,50.10 ⁻⁵	264,5
²³⁴ U	3310	0,014	
²³⁶ U	10,4	0,0043	

2. Évolution du mode de gestion des effluents liquides

Pour pouvoir évaluer l'impact du Centre de la Manche sur le milieu naturel et l'homme, il est nécessaire de caractériser le terme source, c'est-à-dire les rejets effectués dans l'environnement, que ce soit de manière directe (rejets à la Sainte-Hélène) ou indirecte (rejets en mer via la COGEMA La Hague). Pour cela, il convient de connaître les modalités techniques de rejets des eaux collectées (effluents) au niveau du Centre depuis sa mise en service en 1969 jusqu'à nos jours. On appelle "eaux à risque" les eaux susceptibles de présenter un marquage radiologique.

On distingue 3 périodes durant lesquelles les modes de gestion des eaux du Centre ont évolué consécutivement aux différents retours d'expérience. La 4^{ème} période correspond au mode de gestion des eaux collectées durant la phase de surveillance du Centre.

- Période 1969-1979
- Période 1980-1987
- Période 1988-actuellement
- Phase de surveillance du Centre (configuration prévue après parution de l'arrêté de rejets et du décret de passage en phase de surveillance)

Remarque: on précise qu'il n'y a pas de rejet gazeux du Centre de la Manche.

Période 1969-1979

Pendant les dix premières années de fonctionnement, l'ensemble des eaux pluviales recueillies sur le Centre, désignées sous le terme "eau de surface" était collecté par des fossés en bordure Nord et Est du site et le long de la route centrale d'axe Sud-Nord.

Ces fossés de collecte aboutissaient dans un bac de rétention d'une capacité de 50 m³. Les eaux ainsi recueillies transitaient par la station de surveillance des eaux avant d'être déversées dans le ruisseau de la Sainte-Hélène. Cette station de surveillance était équipée d'une pompe de reprise permettant de détourner une partie des eaux vers les installations de rejet en mer de l'établissement COGEMA La Hague.

Période 1980-1987

Suite aux premiers retours d'expérience et en particulier à "l'incident tritium" de 1976, il a été décidé la mise en place d'un réseau de collecte spécial, dédié à la récupération des eaux de surface ayant été au contact des ouvrages. Ce nouveau réseau appelé réseau "séparatif" était en principe indépendant du réseau "pluvial", mais il s'est avéré trop fragile (rupture des canalisations en surface entraînant le mélange des eaux). Il a donc été remplacé en 1982 par un collecteur, disposé dans une galerie souterraine visitable et donc protégé.

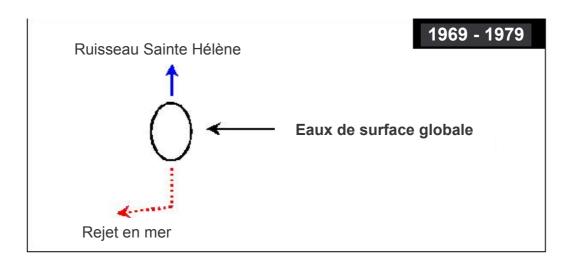
Pendant cette période, les rejets de ces deux réseaux s'effectuaient comme suit :

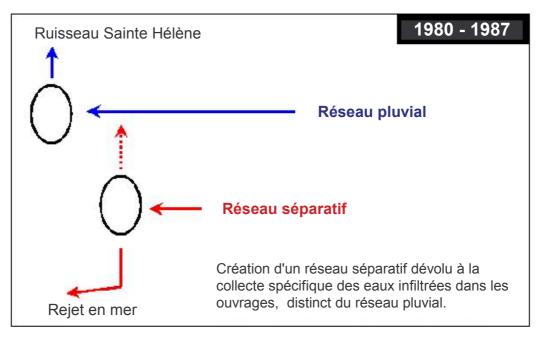
- pour le réseau pluvial, les eaux après collecte en point bas du Centre étaient dirigées vers le ruisseau de la Sainte-Hélène via la station de contrôle de l'établissement COGEMA La Hague;
- pour le réseau séparatif, les eaux étaient envoyées vers la station de pompage de COGEMA La Hague qui les dirigeait vers l'émissaire de rejet en mer. Toutefois, lorsque le débit dépassait 10 m³/h, les eaux du réseau séparatif rejoignaient les eaux pluviales déversées dans le ruisseau de la Sainte-Hélène.

Période 1988 à actuellement

A partir de 1988, l'augmentation des capacités de reprise par pompage des eaux du réseau séparatif a permis de diriger la totalité des eaux collectées par ce réseau vers l'émissaire marin.

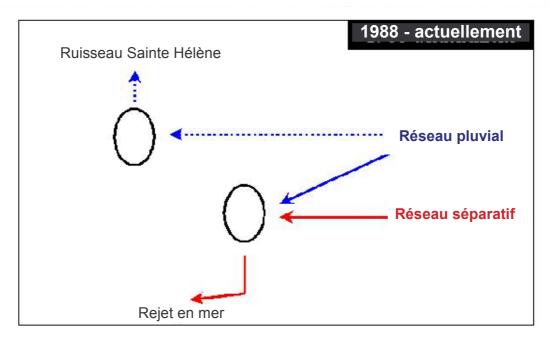
Le réseau pluvial envoie également les eaux vers l'émissaire marin, sauf en cas de forte pluie pour lesquelles ces eaux, après contrôle, rejoignent le ruisseau de la Sainte-Hélène. Par ailleurs depuis 1991, année du début des travaux de couverture, le réseau initial de collecte des eaux pluviales a été remplacé par un nouveau réseau pluvial.

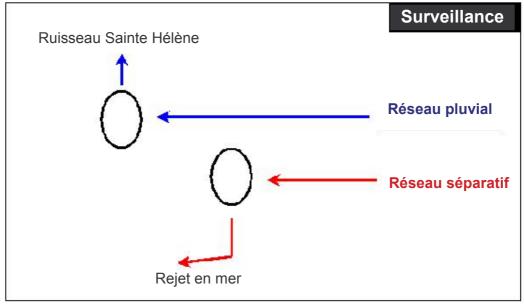

Évolution prévue pour la phase de surveillance


Du fait de l'achèvement des travaux de couverture des ouvrages de stockage, consistant notamment en la mise en place de la membrane bitumineuse assurant l'étanchéité, les eaux pluviales sont destinées à être dirigées vers la Sainte-Hélène. Les eaux susceptibles de présenter un marquage radioactif seront envoyées vers la canalisation de rejet en mer de la COGEMA La Hague.

Cette configuration sera effective après la parution de l'arrêté de rejets et du décret de passage en phase de surveillance.

Les schémas de gestion des effluents correspondant à ces quatre périodes sont reportés sur les figures ci-après.


La gestion des effluents du Centre Manche depuis 1969

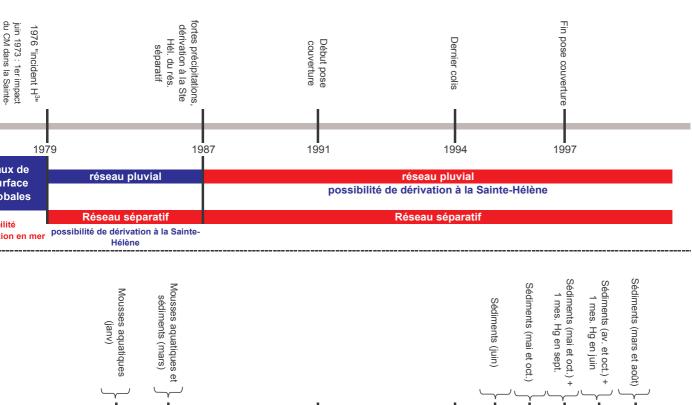


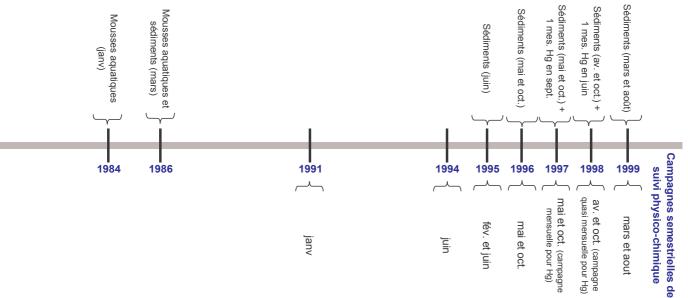
----- Cheminement nominal
----- Cheminement de dérivation

La gestion des effluents du Centre Manche depuis 1969

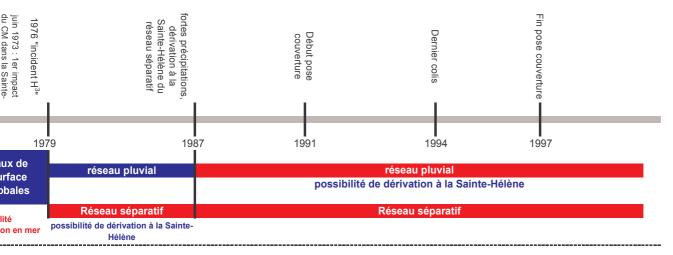
----- Cheminement nominal
----- Cheminement de dérivation

On précise qu'en phase de surveillance, le réseau pluvial comprendra uniquement les eaux de surface ne présentant aucune trace de radioactivité mesurable. Les eaux de drainage sur et sous membrane seront dirigées en totalité vers le réseau séparatif avant rejet en mer via la conduite de COGEMA La Hague.

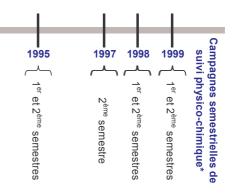

3. Chronologie des mesures disponibles dans les différents exutoires des rejets liquides du Centre de la Manche

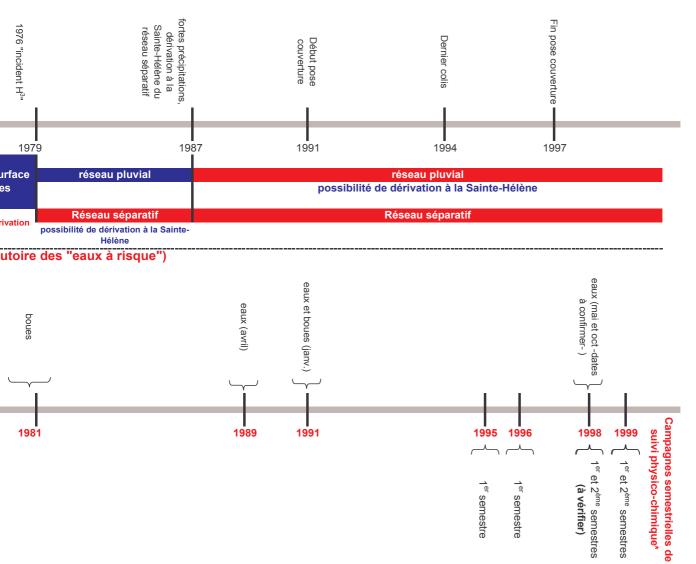

Sur les figures ci-après, sont mentionnées, pour les différentes phases d'exploitation du Centre correspondant aux différents modes de gestion des effluents décrits précédemment, les mesures réalisées sur :

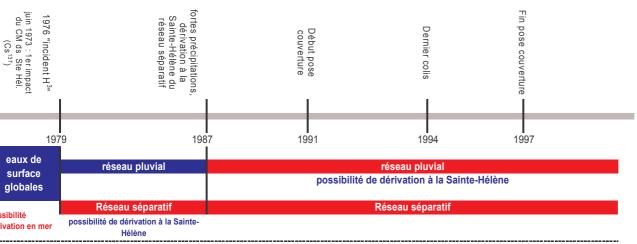
- les eaux à risque collectées au niveau du réseau séparatif (points BRS0 et BDS),
- les eaux de surface collectées au point CMG du réseau pluvial.

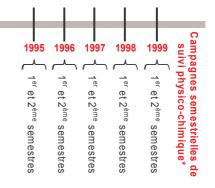

Par ailleurs, les données disponibles concernant le ruisseau de la Sainte-Hélène sont aussi précisées.

réparation au PASSAGE en PHASE de SURVEILLANCE




CHE et préparation au PASSAGE en PHASE de SURVEILLANCE

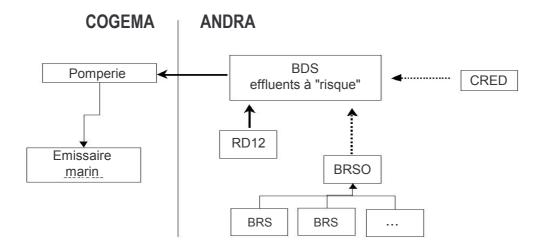

luvial


t préparation au PASSAGE en PHASE de SURVEILLANCE

NCHE et préparation au PASSAGE en PHASE de SURVEILLANCE

RS0 (exutoire des eaux collectées au bas des ouvrages)

4. Résultats des campagnes de mesure réalisées au niveau des eaux "à risques" et des eaux du réseau pluvial


4.1. Analyses physico-chimiques sur les eaux dites "à risques" du réseau séparatif

La dénomination "à risques" se rapporte au caractère potentiellement radioactif des eaux. Les effluents à risque comprennent :

- les eaux de drainage sur et sous membrane de la couverture mise en place dans les années 90,
- les eaux collectées ayant été en contact avec les colis de déchets et qui, de ce fait, sont susceptibles d'être contaminées par la radioactivité,
- les eaux du réseau de drainage profond.

Ces eaux sont dirigées vers l'émissaire marin, via la conduite de la COGEMA La Hague.

Le schéma suivant présente les différents points de contrôle des eaux à risque du Centre de la Manche.

On distingue les points de contrôle suivant :

- les BRS, bacs du réseau séparatif gravitaire enterré, qui recueillent les eaux récupérées au bas des ouvrages de stockage dans lesquels se trouvent les colis de déchets,
- le BRS0, exutoire final des eaux collectées au bas des ouvrages,
- le RD12, réseau de drainage profond, situé à la base des installations enterrées du Centre de la Manche (murs de soutènement, galeries, bâtiment des bassins). Ce réseau n'est pas en contact direct avec les colis mais, situé altimétriquement plus bas que le niveau de stockage des déchets, il présente un risque de contamination radioactive. Il est donc géré au titre des effluents à risque,

- la CRED, Chambre de Récupération des Eaux de Drainage, qui collecte l'ensemble des eaux de drainage sur et sous membrane de la couverture. Ces eaux présentent, uniquement lorsque les débits sont faibles, un risque de léger marquage en tritium, lié à des transferts gazeux à partir des ouvrages de stockage. Au delà de quelques m³/h, plus aucune trace de tritium n'est détectée. Exceptionnellement, en cas de très fortes pluies, une fraction de ces eaux peut être orientée vers le réseau pluvial par surverse dans la Chambre de Mesure Globale (CMG). Dans ce cas de figure, compte tenu des débits et des mécanismes de transfert gazeux, les eaux de drainage n'ont pas le temps de se charger en tritium et ne présentent pas de radioactivité artificielle détectable, rajoutée par les activités du Centre de la Manche.
- le BDS, Bac du Séparatif, exutoire des eaux à risque du Centre de la Manche avant transfert à la COGEMA La Hague pour rejet en mer.

Les mesures physico-chimiques effectuées sur ces eaux portent essentiellement sur des échantillons prélevés au niveau du BRS0 et du BDS. Les échantillons analysés sont des échantillons moyens semestriels c'est-à-dire qu'ils sont constitués d'aliquotes prélevés périodiquement au niveau du point de contrôle de manière à constituer un échantillonnage moyen semestriel représentatif de la qualité globale de l'eau pendant cette période.

Les données correspondantes sont regroupées dans les **tableaux N° 4 et 5** ci-après concernant les points BDS et BRS0 respectivement.

	K	Mg	Na	NO ₃	SO ₄
7	31,4	6,7	31	42,6	130
01	7,3	12,4	25,9	36,1	200
	6,2	21	15	17,9 (mars)	961 (mars)
6	8,2	15,9	22,7	26,2 (août)	494,6 (août)
	8,4	23,4	22		

Mesures sur échantillons ponctuels

As	В	Ва	Ве	Cd	Со	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Sn	Zn	CN
			<0,2	0,1		1	5	25		<1	2	<0,5		10	
						0									
3			<2	<0,8		21		160	0,23	95	56	<2	<5	120	
1	260	30	10	2,4	100	3	144	135	<0,3	1400	212	<5	<2	140	<10
1	120	44	<6	<3,4	104	2	106	116	<0,3	1000	160	<1	<2	670	<10
1	120	26	<9	<0,4	<146	2	160	144	<0,3	1520	310	<2	<2	950	<20
	·	·													

yens semestriels prélevés au BDS

Ca	K	Mg	Na	NO ₃	SO₄
0,8	120	7,6	76	74,2	250
3,6	190	10,8	109,6		390
3,2	66	11,2	53,6	28,9	39
6,7	190	10,9	116	114,5	392
8,9	380	9	190,4	183,6	380
31,3	316	9,7	184	<u>146</u>	420
64,8	303,5	10,6	121,7	<u> 109,8</u> –	
40	232	11	126	152,7	<u>588</u>
20	135	9,6	58	35,1 (mars)	234,9 (mars)
51,7	97,2	8,88	95	144,1 (août)	314,5 (août)
31,6	96,8	10,2	61		, ,
· · · · · · · · · · · · · · · · · · ·					

Souligné : non acidifié

Nitrate+nitrite

Mesures sur échantillons ponctuels depuis 1999

S	В	Ва	Ве	Cd	Со	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Sn	Zn	CN
			<0,2	0,3		3,7	40	50		<1	3,2	<0,5		15	
6			<2	<0,5		15	33	40	0,3	9	2	5	<5	45	
4			<2	<0,5		34	10	160	0,2	6	9	<2	<5	5	
5			<2	<0,5		4	39	250	<0,1	13	3	26	17	340	
7			<2	<0,5		63	28	340	<0,1	32	37	10	<2	310	
1			<2	0,5		27	180	50	0,16	22	13	41	<5	840	
5	490		<2	0,5		17	116	90	0,16	18	9	23	<5	1020	
4	110		<1	<20		<100	260	100	0,24	<50	<100	<200	<2	1270	
1	250	31	1	0,1		8	13	80	<0,3	3	3	<1	<2	140	
5	120	44	<1	<0,1		10	14	320	<0,3	3	3	<1	<2	170	

yens semestriels prélevés au BRS0

Des mesures sur des échantillons prélevés ponctuellement ont aussi été réalisées, de manière non systématique, au point BDS. Les données correspondantes sont présentées au **tableau N° 6** suivant. Depuis 1999, les mesures sur échantillons ponctuels sont systématiques pour certains paramètres qui ne se conservent pas dans le temps (nitrate, sulfate...).

Tableau N° 6: Mesures sur échantillons ponctuels au point BDS (concentrations en μg/l)

	15/01/91	04/04/91	28/04/98	13/10/98	31/03/99	26/08/99
Al	< 100	< 100	1900	400		
As	< 10	< 10	30	< 10		
В	315	190	870	< 50		
Ва	70	14	61	31		
Be			7	1		
Br					< 50	< 50
Cd	< 5	< 5	10.4	0.4		
CN					< 10	< 10
Co	< 20	< 20	340	84		
Cr	< 20	< 20	2	< 1		
Cu	< 20	< 20	185	58		
Fe	< 20	45	10.1	70		
Hg	< 1	< 1	< 0.1	< 0.1		
Mn	9	< 5	4496	829		
Ni	< 20	< 20	619	156		
NO ₃	57400	43700	11500	5200	17900	26200
Pb	< 5	< 5	2	3		
SO ₄	70200	115000	387700	184600	861000	494600
Zn	97	< 5	1800	500		

Les campagnes de mesures sur échantillons filtrés apparaissent dans l'encadré rouge.

4.2. Analyses de plomb dans l'eau de certains BRS

En 1997, des analyses de plomb ont également été effectuées dans l'eau du réseau séparatif gravitaire enterré drainant les ouvrages renfermant des quantités de plomb supérieures à 450 tonnes.

Pour les ouvrages dont le réseau de drainage présentaient des écoulements (BRS "qui coulent"), les teneurs en plomb sont de l'ordre de quelques microgrammes par litre (valeur maximale de 4,4 µg/l) comme l'indique le **tableau N° 7**.

Cela apparaît cohérent avec le fait que la majeure partie du plomb présent dans les colis de déchets est sous forme métallique (écrans biologiques).

Tableau N° 7 : Analyse dans l'eau des bacs du réseau séparatif (BRS) drainant les ouvrages contenant plus de 450 tonnes de plomb

OUVRAGE	BRS associé(s)	Masse totale de plon	nb stocké (tonnes)	[Pb] (µg/l)
T35		1845		
T35-1	144	929		1,6
T35-2	158	916	ne coule pas	
P28		1579		
P28-1	141	739		4,4
P28-2	156	840	ne coule pas	
P31		1402		
P31-1	130 131 150	249	ne coulent pas	
P31-2	132	467		2,8
P31-3	133	686		2,8
P13		1006		
P13-1	81 82	176		0,6 et 1,4
P13-2	81 82	673		0,6 et 1,5
P13-3	27	157	ne coule pas	
P29		822		
P29-1	105	117		1,7
P29-2	106	446	ne coule pas	
P29-3	107	259	ne coule pas	
P30		833		
P30-1	134	703		3
P30-2	135	130	ne coule pas	
T21	10	510		1,6
T34		618		
T34-0	108	69	ne coule pas	
T34-1	109	255		2,6
T34-2	145	294		2,2
P23	139	521		1,2

4.3. Analyses physico-chimiques sur les eaux du réseau pluvial

Les premières mesures physico-chimiques effectuées sur les eaux du réseau pluvial datent de 1995 et portent essentiellement sur des échantillons moyens semestriels constitués d'aliquotes prélevés mensuellement à la Chambre de Mesures Globales (CMG).

Les données correspondantes sont regroupées dans le **tableau N° 8** suivant.

Avant 1987, la CMG, de même que le bassin d'orage, n'existaient pas ; les eaux pluviales étaient alors collectées dans le BRP, Bac du Réseau Pluvial, puis dirigées vers un petit bassin de COGEMA La Hague (bassin de floculation) avant reprise par pompage pour rejet en mer ou dérivation vers la Sainte-Hélène. Le point BDP n'a pas fait l'objet de suivi physico-chimique.

Ca		K		Мg	N	а	NO ₃		SO ₄							
45		5	3	3,2	13,	5	18,7		32,6							
46,8	!	9,6	3	3,7	19)	9,4		58							
											Soulig		non aci	difié		
												Nitr:	ate+nitri	te		
						_			40			The des Theres				
42,6		0,1		5,7	16,		<u>31</u>		10		L					
48,1	,	5,6	!	5,1	13,	7	<u>11,5</u>		/							
28		26		5	13,	3	<u>22,1</u>		24,2		\mathcal{C}					
17,4	;	3,3	4	4,3	9,2	2	5,8 (ma	rs)	37,4 (ma	ars)		Ma	sures su	ır		
47,1		,44		,93	16,		1,8 (ao	ût)	6,3 (aoi		إ فر		ons pon			
22	,	3,4	4	4,1	11		•		,	ŕ		Ji iai iai	one pon	lotaolo		
В	Ва	Ве	Cd	Со	Cr	Cu	Fe Fe	Hg	Mn	Ni	Pb	Sn	Zn	CN		
\vdash									+							

•	В	Ва	Ве	Cd	Со	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Sn	Zn	CN
			<0	0,1		0,3	5	35		<1	8	<0,5		10	
			<2	<0,5		2	9	3900	0,1	130	4	6	<5	64	
			<2	1		14	1720	270	0,16	1000	59	103	<5	2100	
	460		<2	0,6		<3	54	130	0,16	183	25	21	<5	480	
	<40		<1	<20		<100	80	400	0,19	<410	<100	<200	<2	1300	
	290	13	1	0,4	5	3	18	380	<0,3	100	14	<1	<2	100	20
	60	48	<2	<0,5	15	2	29	370	<0,3	20	30	<1	<2	180	
	160	22	<1	<0,1	<9	3	22	310	<0,3	112	22	<2	<2	150	<20

yens semestriels prélevés à la CMG

Des mesures sur des échantillons prélevés ponctuellement ont aussi été réalisées à la CMG. Les données correspondantes sont présentées dans le **tableau N° 9**.

Tableau N° 9 : Mesures sur échantillons ponctuels à la CMG (concentrations en µg/l)

	15/02/95	15/06/95	15/05/96	15/10/96	15/05/97	15/05/97	15/10/97	15/10/97	28/04/98	13/10/98	31/03/99	26/08/99
Al	1410	2110	3400	800	2170	1162	150	100	100	300		
As	< 1	< 1	< 10	< 10	< 1	< 1	20	13	< 10	< 10		
В	< 10	200	80	< 50	210	210	230	165	680	< 50		
Ва	20	14	400000	20	50	48	31	30	41	25		
Be	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
Br											< 50	< 50
Cd	< 1	< 1	2	< 1	< 0.1	< 0.1	< 0.1	< 0.1	0.7	< 0.1		
CN	< 100	< 100									< 10	< 10
Со	< 5	< 5	34	< 1	< 1	4	11	12	13	6		
Cr	< 5	< 5	5	< 1	< 1	1	3	3	1	< 1		
Cu	< 10	< 10	3	88	8	13	8	16	15	15		
Fe	1480	2110	710	310	1126	462	30	32	40.5	170		
Hg	< 1	< 1	< 0.1	0.2		0.7	< 0.1	0.1	< 0.1	< 0.1		
Mn	90	200	800	30	< 1	65	150	151	53	160		
Ni	100	< 5	119	2	< 1	7	27	25	29	14		
NO ₃	3420	2170	15600	5500	-	22800	-	7100	5400	2500	5800	1800
Pb	< 10	< 10	9	2	1	1	< 1	2	1	7		
Sb	< 1	< 1	2	< 1	1	< 1	< 1	18				
SO ₄	35600	21600	130900	143600	-	79100	-	196300	101400	60500	37400	6300
Zn	20	130			50		< 100		72	78		

Les données présentant des incohérences sont notées en italiques

Les campagnes de mesures sur échantillons filtrés apparaissent dans l'encadré rouge.

Les signes "-" signifie absence de mesure

Le groupe chimique dans sa totalité s'est entendu à ne conserver, pour les analyses des impacts sur les écosystèmes aquatiques de la Sainte-Hélène, que les résultats des mesures de concentrations d'éléments et espèces chimiques effectuées par le laboratoire Calydra en 1999 et 2000. En effet, des remises en cause ont été formulées sur les campagnes précédentes notamment en raison, d'une part de l'absence de validation des résultats par le calcul de la balance ionique et d'autre part de valeurs particulièrement élevées et aberrantes (supérieures à la limite de solubilité) en baryum en 1996 fournies par le laboratoire Crépin. Bien que les mesures du laboratoire Crepin soit effectuées conformément aux normes, les teneurs aberrantes en baryum ne trouvent actuellement pas d'explication. Aussi, pour éviter toute confusion et remise en cause ultérieure des travaux du groupe, il a été jugé préférable, dans le contexte du GRNC, d'écarter les campagnes de mesures de ce laboratoire. S'agissant des campagnes Calydra de 1999 et 2000, les balances ioniques varient de 1 à 15 % environ ce qui permet l'utilisation des concentrations en métaux lourds reportées au cours de ces analyses pour l'évaluation des risques environnementaux au niveau de la Sainte-Hélène.

5. Evaluation de l'ordre de grandeur des rejets annuels massiques en mer des eaux à risque via l'émissaire de COGEMA La Hague

A partir des concentrations dans les eaux à risques aux points BDS et BRS0 et des volumes annuels d'eau recueillis en ces mêmes points, il est possible d'évaluer l'ordre de grandeur des flux massiques annuels rejetés en éléments toxiques. L'exercice a été réalisé pour les éléments de béryllium, cadmium, chrome, mercure, nickel et plomb.

Pour une année donnée, on utilise pour le calcul :

- la valeur supérieure des concentrations des 2 échantillons moyens semestriels (le cas échéant)
- une valeur approximée des volumes collectés.

Les résultats des calculs sont présentés dans les **tableaux N° 10 et 11** pour les points BDS et BRS0 respectivement.

Ces valeurs représentent l'ordre de grandeur de la contribution actuelle du Centre de la Manche au rejet en mer des eaux à risque de COGEMA La Hague via l'émissaire marin.

uels au BDS pour les éléments toxiques identifiés dans l'inventaire : EXERCICE

B tot	[Be]	Be tot	[Cd]	Cd tot	[Cr]	Cr tot	[Cu]	Cu tot	[Hg]	Hg tot	[Ni]	Ni tot	[Pb]	Pb tot	[CN]	CN tot
		! ! !		! ! !		: :		! ! ! !								
		!		! !				 								
g/an	μg/l	g/an	μg/l	g/an	μg/l	g/an	μg/l	g/an	μg/l	g/an	μg/l	g/an	μg/l	g/an	μg/l	g/an
	< 0,2	< 4,6	0,1	2,3	1	23	5	115			2	46	< 0,5	< 11,5		
-	< 2	< 40	< 1	< 16	21	420		! !	0,23	4,6	56	1120	< 2	< 40		
]																
}	[L					
8060	10	310	< 3	105,4	3	93	144	4464	< 0,3	< 9,3	212	6572	< 5	< 155	< 10	< 310

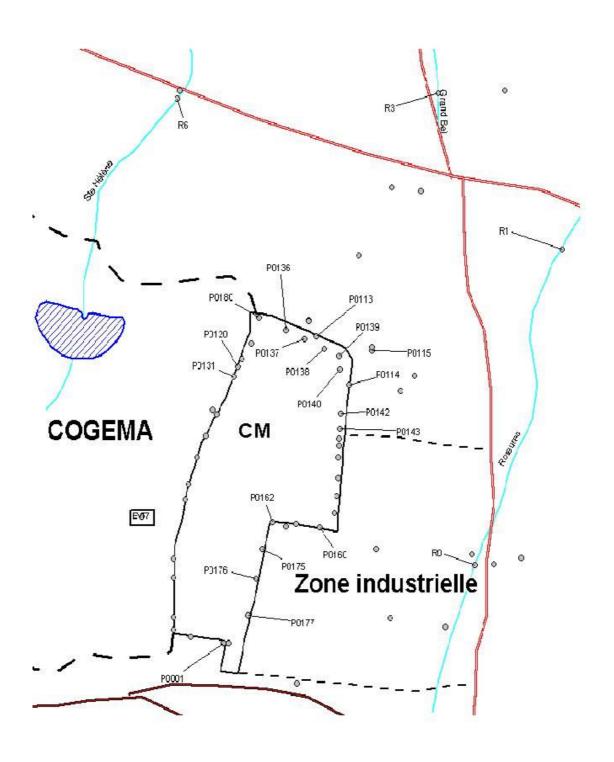
uels au BRS0 pour les éléments toxiques identifiés dans l'inventaire : EXERCICE

[B]	B tot	[Be]	Be tot	[Cd]	Cd tot	[Cr]	Cr tot	[Cu]	Cu tot	[Hg]	Hg tot	[Ni]	Ni tot	[Pb]	Pb tot	[CN]	CN tot	
µg/l	g/an	μg/l	g/an	μg/l	g/an	μg/l	g/an	μg/l	g/an	μg/l	g/an	μg/l	g/an	μg/l	g/an	μg/l	g/an	
		< 0,2	< 1	< 1	< 2,5	15	75	40	200	0,3	1,5	3,2	16	5	25			
		< 0,2	< 0,16	< 1	< 0,4	34	27,2	< 39	< 31,2	0,2	0,16	9	7,2	26	20,8			
		< 0,2	< 0,026	0,5	0,065	63	8,2	180	23,4	0,16	0,0	37	4,8	41	5,3			
490	112,7	< 0,2	< 0,046	< 20	< 4,6	< 100	< 23	260	59,8	0,24	0,1	< 100	< 23	< 200	< 46			
250	65	1	0,26	0,1	0,026	10	2,6	14	3,64	< 0,3	< 0,078	3	0,78	< 1	< 0,26			

6. Surveillance du Centre et de son environnement proche

Les objectifs de la surveillance

La surveillance du Centre et de son environnement repose sur un certain nombre de mesures et d'observations. La nature et la fréquence de ces mesures sont spécifiées dans un plan réglementaire de surveillance. Depuis l'ouverture du Centre de la Manche, plusieurs plans de surveillance ont été mis en œuvre successivement dans l'objectif notamment de détecter suffisamment tôt les éventuels relâchements radioactifs et de prendre les dispositions nécessaires à leur maîtrise. Tous les plans de surveillance sont fondés sur les contrôles de la radioactivité de l'air et des eaux météoriques, des eaux de surface et des eaux collectées à la base des ouvrages, des eaux de la nappe phréatique et de ses exutoires naturels (ruisseaux). La surveillance est basée sur le principe de recherche d'anomalie éventuelle par une exploration progressant de l'aval vers l'amont. Ceci explique que des mesures systématiques soient faites dans l'environnement alors qu'au niveau des bacs situés au bas des ouvrages, ces mesures soient moins fréquentes.


La prise en compte des paramètres physico-chimiques et plus particulièrement des éléments toxiques tels que les métaux lourds par exemple dans le plan de surveillance ne s'est faite que récemment, ce qui explique l'absence de données pour les années antérieures à 1995. Il est important de noter que de 1995 à 1998, ces mesures étaient réalisées bien que non inscrites dans le plan réglementaire en vigueur.

La surveillance non radiologique concerne :

- les eaux de surface (ruisseau de la Sainte-Hélène, Grand Bel et Roteures) (cf. localisation des points de prélèvement sur figure jointe),
- les eaux souterraines au droit du Centre et dans l'environnement, via des piézomètres (cf. figure ci-après),
- les eaux de ruissellement,
- l'eau de pluie.

Les sédiments des cours d'eau font également l'objet d'analyses.

7. Mesures disponibles dans les eaux de surface

L'analyse des données de la surveillance de l'environnement doit être conduite en ayant à l'esprit qu'il n'existe pas de lien direct entre le contenu des déchets stockés et les teneurs retrouvées dans les eaux de percolation. Par ailleurs, les origines des métaux ou autres espèces telles que les ions nitrates par exemple mesurés dans l'environnement du Centre peuvent être multiples, à commencer par l'agriculture locale ainsi que l'eau de pluie dont des teneurs anormalement élevées en certains métaux ont été révélées au cours de certaines campagnes. Ces teneurs sont potentiellement liées à la circulation automobile (cas du plomb notamment) ainsi qu'à des activités industrielles avoisinantes.

Les principaux exutoires de la nappe phréatique située sous le Centre de la Manche sont le ruisseau de la Sainte-Hélène et le ruisseau du Grand-Bel. Le ruisseau des Roteures quant à lui ne draine pas d'eau ayant transité sous le Centre, les points de contrôle R0 et R1 ne sont par conséquent pas soumis à l'influence du Centre.

Les données présentées concernent néanmoins ces trois ruisseaux.

Le ruisseau de la Sainte-Hélène

Les différentes mesures réalisées depuis 1994 dans le ruisseau de la Sainte-Hélène sur des échantillons d'eau prélevés en amont du Pont-Durand (point de prélèvement R6) et en aval de la confluence avec le Grand-Bel (point de prélèvement R6-10) sont résumées dans les **tableaux N° 12 et 13** suivants.

Les éléments chimiques mesurables (concentration supérieure à la limite de détection analytique) sont essentiellement pour les métaux, l'aluminium, le fer, le manganèse, le zinc et les nitrates et les sulfates.

Des mesures ont également été réalisées sur des sédiments prélevés au point R6 (exprimées en teneur massique de matière sèche) et font l'objet du **tableau N° 14**.

Les éléments en quantité significative sont sensiblement les mêmes que pour les prélèvements d'eau.

Le ruisseau Le Grand Bel

Les mesures réalisées depuis la même date dans le ruisseau du Grand Bel font l'objet du tableau N° 15.

Le ruisseau des Roteures

Les mesures réalisées au point Ro et R1 font l'objet respectivement des tableaux N° 16 et 17.

la Sainte-Hélène (point R6) - Eaux

Ве	Br	Cd	CN	Co	Cr	Cu	Fe	Hg	Mn	Ni	NO_3	Pb	Sb	Sn	SO ₄	Zn	HCT
		<5			<20	<20	<20	<1	18	<20	103000	<5	<5		25000	14	
		<1	<10	<10	<10	<10	180	<0,1	20	<5	12000	<10	<2		96000	20	
<1		<1	<100	<5	<5	<10	940	<1	50	<5	1870	<10			24700	90	
<1		<1	<100	<5	<5	<10	320	<1	30	<5	3810	<10	<1		26500	70	
<2	250	<0,2			<2	10	190	<0,1	7	<2	2700	3		<10	26000	66	
<1		<1		<1	7	<1	<10	<0,1	53	6	12900	8	8		22400	<10	420
<1		<1		<1	<1	122	160	<0,1	30	2	4200	3	3		9700	<100	20
<1		<0,1		<1	<1	4	179		1	<1		<1	1			31	
<1		<0,1	<10	<1	<1	11	152	0,7	13	3	8000	<1	<1		13900	71	20
								<0,1									
								<0,1									
								<0,1									
								<0,1									
								<0,1									
								<0,1									
<1		<0,1		3	<1	<1	160		30	7		1,3	<1			60	
<1		<0,1	<10	<1	1	5	162	0,1	31	10	8000	1	<1		18900	63	<10
								<0,1									
								<0,1									
								<0,1									
								<0,1									
								<0,1									
								<0,1									
								<0,1									
<1		0,2	<25	<1	<1	<1	60	<0,1	3	3	8700	2			19500	20	90
								<0,1									
								<0,1									
<1		<0,1	<25	<1	<1	10	200	<0,1	33	<1	8200	1			98000	56	<10
								<0,1									
<1	<50	0,2	<10	1	1	5	200	<0,3	24	3	11700	1		<2	24300	106	<0,2 mg/kg
<1	<50	<0,1	<10	<1	<1	2	233	<0,3	27	2	5900	<2		<2	19400	61	<0,2 mg/kg

chlorure, florure, nitrite, phosphate, silice, calcium, K, Na, Sr, T $^{\circ}$, pH, conductivité, O $_2$, dissous, DBO chlorure, fluorure, nitrite, phosphate, calcium, K, Na, Sr, T $^{\circ}$, pH, conductivité, O $_2$ dissous, DBO Ca, Mg, K, Na, Cl, F, nitrite, phosphate, hydrogénocarbonate COT, MES, Cl, Ca, Mg, Na, K, nitrite, NH $_4$, orthophosphate, HTC

r la Sainte-Hélène (point R6-10) - Eaux

Ве	Br	Cd	CN	Co	Cr	Cu	Fe	Hg	Mn	Ni	NO_3	Pb	Sb	Sn	SO ₄	Zn	HCT
		<1	<10	<10	<10	<10	340	<0,1	20	<5	25500	<10	<2		24000	10	
<1		<1	<100	<5	<5	<10	830	<1	70	<5	5170	<10	<1		20600	20	
<1		<1	<100	<5	<5	<10	560	<1	40	<5	6150	<10	<1		28600	20	
<1		<1		<1	17	<1	<10	<0,1	49	12	23400	9	<1		22600	<100	140
<2	210	<0,2			<2	<2	270	<0,1	5	<2	5000	<2		<10	26000	18	
<1		<1		<1	<1	88	310	0,2	30	2	17400	2			19600	<100	70
<1		<0,1		<1	<1	1	78		<1	<1		<1	<1			8	
<1		<0,1	<10	<1	<1	6	72	0,8	6	2	24500	<1	<1		22800	14	30
<2	210	<0,5			<2	<2	200	<0,1	20	<2	23100	<2		<10	26000	9	
								<0,1									
<1		<0,1		1	1	<1	<10		11	3		1,4	<1			15	
<1		<0,1	<10	<1	1	3	134	<0,1	11	7	18800	<1	<1		21800	16	<10
								<0,1									
								<0,1									
								<0,1									
								<0,1									
								<0,1									
								<0,1									
								<0,1									
<1		0,1	<25	<1	<1	<1	40	<0,1	1	2	24700	<1			21900	<10	<10
								<0,1									
<2		<0,5			<2	<2		<0,1		<2		<2		<10		9	
<2	200	<0,5			<2	<2	110	<0,1	16	4		<2		<5		8	
								<0,1									
<1		<0,1	<25	<1	<1	12	320	<0,1	32	<1	12000	2			48600	25	30
								<0,1									
<1	<50	0,1	<10	<1	<1	1	200	<0,3	116	2	28300	1		<2	21400	58	<0,2 mg/kg
<1	<50	0,1	<10	<1	<1	<1	193	<0,3	22	<2	21300	<2		<2	20500	21	<0,2 mg/kg

r la Sainte-Hélène (point R6) – Sédiments

199	96		1997			1998		199	99
96	15/10/96	15/05/97	08/09/97	15/10/97	28/04/98	10/06/98	13/10/98	31/03/99	26/08/99
					36827		35403	13157	5316
	<5	<5		<5	<5		<5	2,9	3,1
							<10	157	115
								5,2	53,2
								15,6	0,7
3	<0,8	<0,8		<0,8	<0,8		<0,8	0,04	0,03
	<5	5		<5	<5		<5	<29	<29
	<10	6		<10	11		<10	<15	<15
1	7264	6758		6739				7484	4617
		<0,3	0,02	<0,3	<0,3	0,0382	<0,3	<0,7	<0,7
	295	189		133				165	34
	8	5		5	<5		<5	<29	<29
	<10	7		<10	<10		<10	5,1	2,5
					<10		<10	<0,6	0,7
	130	55		7	67		80	122	149
	20	21		<5	23		15	32	134

Informations disponibles concernant les sédiments

anophosphorés, triazines	1996	% de matières sèche, % de matière volatile, granulométrie
	1997	% de matière sèche, % de matière volatile, granulométrie
	1998	granulométrie, granulométrie laser
	1999	% de matière sèche, granulométrie (<2 mm et w63 μm)

le ruisseau Le Grand Bel (point R3)

Ва	Ве	Br	Cd	CN	Co	Cr	Cu	Fe	Hg	Mn	Ni	No ₃	Pb	Sb	Sn	SO ₄	Zn
35			<1	<10	<10	<10	<10	<25	<0,1	<5	<5	18500	<10	<2		16000	<10
35	<1		<1	<100	<5	<5	<10	80	<1	<10	<5	41200	10	1		15600	10
25	1		<1	<100	<5	<5	<10	1400	<1	40	<5	3300	<10	<1		28300	60
000	<1		<1		<1	1	<1	<10	0,2	33	8		7	<1			<100
	<2	190	<0,2			<2	<2	150	<0,1	<2	<2	4100	<2		<10	20000	3
30	<1		<1		<1	<1	58	100	0,2	20	2		2	<1			<100
45	<1		<0,1		<1	<1	1	<10		<1	<1		<1	<1			
43	<1		<0,1		<1	<1	<1	<10	0,8	2	<1		<1	<1			20
									<0,1								
									<0,1								
									<0,1								
									<0,1								
									<0,1								
									<0,1								
37	<1		<0,1		2	1	<1	20	0,03	4	7		<1	<1			8
B7	<1		<0,1		4	<1	2	22	0,01	5	5		<1	<1			8
									<0,1								
									<0,1								
									<0,1								
									<0,1								
									<0,1								
									<0,1								
									<0,1								
66	<1		0,3		<1	<1	<1	<10	<0,1	1	2		<1				<10
									<0,1								
									<0,1								
39	<1		<0,1		<1	<1	10	40	<0,1	13	<1		<1				<10
									<0,1								
48	<1	<50	<0,1	<10	<1	1	<1	16	<0,3	2	6	21600	<1		<2	16400	<10
40	<1	<50	0,3	<10	<1	<1	<1	3	<0,3	2	<2	17700	<2		<2	16100	<10

pour le ruisseau Les Roteures (point R0)

objet de mesures physico-chimiques : le point R0, correspondant à la source, et le point R1, en aval

Ва	Ве	Br	Cd	CN	Со	Cr	Cu	Fe	Hg	Mn	Ni	No ₃	Pb	Sb	Sn	SO ₄	Zn
<20			<1	<10	<10	<10		3300	<0,1	230	<5	2100	<10	<2		8000	<10
25	<1		<1	<100	<5	<5	<10	1450	<1	110	<5	1170	<10	<1		40500	40
13	<1		<1	<100	<5	<5	<10	860	<1	110	<5	1880	<10	<1		7120	50
30000	<1		<1		<1	14	2	1050	0,1	300	10		10	<1			<100
70	1		<1		1	<1	41	2600	0,1	230	5		3	3			<100
17	<1		<0,1		<1	<1	2	970		3	1		<1	<1			2
17	<1		<0,1		<1	<1	1	895	0,7	135	5		<1	<1			68
									<0,1								
12	3		<0,1		<1	2	<1	2370	<0,1	430	7		1	<1			13
14	3		<0,1		1	1	39	1611	<0,1	314	9		7	<1			41
									<0,1								
									<0,1								
									<0,1								
									<0,1								
									<0,1								
									<0,1								
									<0,1								
									<0,1								
									<0,1								
									<0,1								

oles pour le ruisseau Les Roteures (point R1)

objet de mesures physico-chimiques : le point R0, correspondant à la source, et le point R1, en aval

Ba <20 25	Ве	Br	Cd	CN	Со	Cr	Cu	Fe	Hg	Mn	Ni	No ₃	Pb	Sb	Sn	SO ₄	Zn
						-	0 4		i iy	IVIII	1 11	1103	וטו	OD	OII	004	
25			<1	<10	<10	<10	<10	340	<0,1	25	<5	12000	<10	<2		9000	10
	<1		<1	<100	<5	<5	<10	760	<1	80	<5	1620	<10	<1		11200	30
10	<1		<1	<100	<5	<5	<10	770	<1	40	<5	<1540	<10	<1		6720	50
5000	<1		<1		2	9	1	390	<0,1	100	17		11	2			<100
30	<1		<1		10	<1	122	800	0,3	130	9		12	2			<100
21	<1		<0,1		<1	<1	2	501		<1	2		<1	<1			5
20	<1		<0,1		<1	<1	7	497	0,8	45	4		<1	<1			28
									<0,1								
									<0,1								
									0,4								
									0,3								
									<0,1								
									0,1								
21	<1		<0,1		1	1	<1	680	<0,1	99	21		7	<1			100
17	<1		<0,1		<1	<1	23	413	0,1	70	13		4	1			56
									<0,1								
									<0,1								
									<0,1								
									<0,05								
									<0,1								
									<0,1								
									<0,1								
									<0,1								
29	<1		<0,1		<1	<1	2	140	<0,1	2	3		2				13
									0,28								
									<0,1								
									<0,1								
19	<1		0,2		<1	<1	7	620	<0,1	50	<1		3				<10
									<0,1								
25	<1	<50	0,1	<10	1	<1	5	600	<0,3	60	1	7400	4		<2	9700	39
16	<1	<50	0,3	<10	<1	5	<1	377	<0,3	20	3	7800	<2		<2	7300	31

Conclusion

Compte tenu de la nature radiologique des déchets stockés au Centre de la Manche et des dispositions réglementaires en vigueur à l'époque de sa création, l'aspect chimique n'était pas pris en considération dans le programme de surveillance du Centre. Le renforcement progressif de la surveillance a conduit l'exploitant à étendre ses contrôles aux paramètres physicochimiques depuis 1995, date à laquelle le suivi systématique de ces paramètres a été intégré à la surveillance du Centre de la Manche.

La reconstitution d'un terme source pour les années antérieures à 1995 s'avère difficile compte tenu de l'absence de relation directe entre l'inventaire chimique et radioactif des déchets présents sur le site de stockage et les rejets dans l'environnement.

Néanmoins, compte tenu des nombreuses mesures radiologiques effectuées dans l'environnement du Centre depuis sa création et des impacts observés, en particulier au niveau de la Sainte-Hélène, il semble raisonnable de dire que les quantités d'espèces chimiques provenant des déchets rejetées dans l'environnement sont probablement faibles. En effet, il est difficile d'imaginer des rejets fortement polluants en éléments chimiques toxiques et faiblement polluants en espèces radioactives pour des eaux de même origine.

La recherche d'éventuels bioindicateurs constituerait une base méthodologique pour la mise en évidence d'éventuels rejets antérieurs de substances chimiques.

Marine nationale

Arsenal du port de Cherbourg

1. Rejets chimiques de l'arsenal du port de Cherbourg

Avant 1979, les eaux pluviales et les eaux usées provenant :

- des lavabos, des douches ;
- des cuisines (traitement dans des séparateurs à graisses et à fécules) ;
- des toilettes (passage dans des fosses septiques) ;

étaient collectées dans un seul réseau. Ce réseau unitaire se déversait dans les bassins de l'arsenal.

Les travaux de séparation des eaux pluviales et des eaux usées de l'arsenal de Cherbourg ont été réalisés entre 1978 et 1981. Les raccordements des eaux usées de tous les bâtiments du port militaire de Cherbourg à ce réseau ont été terminés en 1985.

Une station de traitement des effluents liquides fonctionne depuis fin 1984.

Avant cette date les bains acides servant au décapage des pièces métalliques étaient neutralisés par des solutions basiques avant rejet dans l'environnement.

Les bains utilisés pour la gavanoplastie étaient évacués vers des entreprises spécialisées ou régénérés par passage sur des résines échangeuses d'ions.

Les rejets effectués étaient conformes à la réglementation existante à l'époque.

Le tableau ci-après présente le volume annuel et les flux annuels des substances chimiques et de la Demande Chimique en Oxygène (DCO) rejetés par la station de traitement des effluents liquides.

Nous observons que, les charges moyennes annuelles sont de l'ordre ou inférieures au kilogramme, mis en part le fluor et le phosphore total (qui sont de l'ordre de 10 kilogrammes par an).

Ces valeurs sont très sensiblement inférieures à celles des rejets des autres sites.

Les rejets atmosphériques (oxydes de soufre, dioxyde d'azote et protoxyde d'azote) ont été évalués de 1991 à 2001 à partir de la taxe parafiscale.

Par ailleurs on trouvera en annexe les quantités d'hydrocarbure utilisées lors des exercices de sécurité (dans le bâtiment Lucifer).

uents liquides à l'Arsenal de Cherbourg

_													
	2000	1999	1998	1997	1996	1995	1994	1993	1992	1991	1990	1989	1988
Charge moyenne annuelle en kg/an	55	84	1195	988	570	400	415	710	850	2060	2718	4883	4460
0,646	*	*	*	*	*	*	*	0,107	0,026	0,062	0,660	0,732	0,669
0,097	*	*	*	*	*	*	*	*	0,000	0,103	0,027	0,098	0,089
0,581	0,002	0,011	0,182	0,115	0,011	1,660	0,623	0,376	0,034	0,113	0,516	0,244	0,178
0,074	0,001	0,001	0,01	0,009	0,006	0,000	0,021	0,014	0,000	0,000	0,082	0,049	0,022
1,177	0,000	0,150	1,096	1,106	0,821	3,320	0,415	0,447	0,077	0,824	3,588	1,514	0,892
142,769	3,0	2,520	26,017	51,1	41,6	271,2	49,8	15,8	60,4	721,0	233,7	195,3	352,3
9,965	0,215	0,163	6,18	4,295	0,935	1,960	1,162	1,917	3,485	8,446	58,709	32,130	9,634
0,305	0,017	0,011	0,181	0,294	0,336	0,064	0,145	0,078	0,043	0,762	0,326	0,439	0,535
0,291	0,011	0,011	0,375	0,273	0,262	1,360	0,025	0,028	0,102	0,515	0,109	0,244	0,669
10,999	0,002	0,023	0,687	0,628	2,069	3,492	0,623	0,071	3,358	51,500	6,414	7,325	66,900
0,012	0,000	0,002	0,044	0,008	0,006								
1,631	0,050	0,072	1,071	0,732	0,627	0,076	0,008	15,620	0,034	1,936	0,054	0,586	0,446
<u> </u>				- 4				DO 000	11 4 4	Cl 4	II - 4	C1	/1/ (

s été effectuée car l'effluent d'entrée ne comportait pas cet élément.

SATESE (Service d'Assistance Technique aux Exploitants de Station d'Épuration). La moyenne de deux me annuel a permis de déterminer ces flux de rejet.

effluent rejeté, après passage dans la station, proportionnellement au débit.

REJETS ATMOSPHERIQUES – TAXE PARAFISCALE

ANNEE	OXYDES DE SOUFRE (kg)	NO ₂ (kg)	N₂O (kg)
1991	5234	22 731	552
1992	5130	35 602	520
1993	6836	53 336	602
1994	3418	31 872	438
1995	9484	43 568	473
1996	6860	32 264	432
1997	13 360	46 510	460
1998	10 360	40 200	480
1999	9660	41 712	540
2000	1420	24 650	420
2001	2460	38 810	440

NOTA : Changement de nature du fuel en 2000

Annexe	de	la N	<i>l</i> larine	Nation	ale
--------	----	------	-----------------	--------	-----

(Annexe à la lettre de la Marine Nationale du 27 juin 2002 n° 122)